Handling large amount of data efficiently

1. Storage media and its constraints (magnetic disks, buffering)
2. Algorithms for large inputs (sorting)
3. Data structures (trees, hashes and bitmaps)
Dynamic indexes

To allow efficient modifications, we need a dynamic data structure, which will guarantee an efficient search in any case.

2 main indexing data structures:

• Dynamic Trees
• Dynamic Hashes
From binary search trees to k-2k B-trees

Binary search tree

2-4 B-tree
From binary search trees to k-2k B-trees

Binary search tree

At most 2 children

At least k and at most 2k children

2-4 B-tree
From binary search trees to k-2k B-trees

Binary search tree

2-4 B-tree

Always 1 key

At least $k-1$ and at most $2k-1$ keys
From B-trees to B+ trees

Data stored together with the key

B-tree

Data stored separately

B+ tree
B+ tree vs. B-tree

1. B+ -tree is a B-tree where internal nodes contain only keys and navigation pointers (not records, not pointers to records), and all the records (or pointers to records) are stored in leaves.

2. In B+ tree each internal node is stored in a page, and more keys fit in a single page. The navigational part of the index is overall smaller, and partly manageable in RAM.

3. The leaf nodes of B+ trees are linked, so doing a full scan of all objects in a tree requires just one linear pass through all the leaf nodes. A B tree, on the other hand, would require a traversal of every level in the tree (random access).
B+ - tree (or simply B-tree)

• B+ tree is the only variant of B-trees used in DBMS
• In all research papers and implementations: we say B-tree - imply B+ -tree
k-2k B trees: properties I

- Each node contains p pointers: $k \leq p \leq 2k$

$k=2$. Each node has 2, 3, or 4 children and between 1 and 3 keys.
k-2k B trees: properties II

• There are 2 types of nodes:
 • **Internal** (non-leaf) node:
 • all p pointers point to the child nodes
 • $p-1$ keys contain navigational info
 • **Leaf** node: 1 pointer points to the next leaf
 • $p-1$ key-value pairs (child pointers), where value can be RID or the entire record
 • the number of child pointers is at least k^*

* In practice, the leaf node may have its own parameters on min and max key-value pairs, because the size of a value in key-value pair can be larger than the pointer used in the internal node. However, for the purposes of this lecture, we assume that min number of key-value pairs is k, and max is $2k-1$ (1 pointer points to the next leaf).
$k-2k$ B trees: properties III

• Each key in an internal node guides the search:
 All keys in the left sub-tree of a given key X have key value $< X$, all keys in the right sub-tree have key value $\geq X$
Data entry

- In a key-value pair of B-tree leaves, the value can be:
 - RID – which gives an exact location of a data record on disk: RID=<block ID, slot #>
 - List of RIDs – in case of multiple duplicate keys
 - Data record itself

- Let’s call any of this value types a *data entry*
Degree=order=fanout =branching factor

- Degree \(d (=2*k) \) means that all internal nodes have space for at most \(d \) child pointers

Example

- Each node is stored in 1 block of size 4096 bytes
- Let
 - key 4 Bytes,
 - pointer 8 Bytes.
- Let’s solve for \(d \):

\[
4(d -1) + 8(d) \leq 4096
\]

\[
\Rightarrow d \leq 341
\]
B-tree capacity: example

\(d \approx 300 \)

a typical node is 67% full (fill factor) \(\Rightarrow \approx 200 \) keys in each node

We have:

- 200 keys at the root
- At level 2 – for each key – another 200 keys – total \(200^2 \) nodes
- At level 3: \(200^3 \)
- At level 4: \(200^4 \approx 16 \times 10^8 \) records can be indexed.

- Suppose each record = 1 KB \(\Rightarrow \) we can index a relation of size
 \[16 \times 10^8 \times 10^3 \approx 1.6 \text{ TB} \]

- If the root and levels 2 and 3 are kept in main memory, then finding RID requires 1 disk I/O!
Buffering top-level nodes

• Often top levels are held in buffer pool:
 • Level 1 = 1 page = 4 KB
 • Level 2 = 200 pages = 800 KB
 • Level 3 = 40,000 pages = 160 MB

• In this case, in practice, lookup requires 1 disk I/O
B-tree construction from sorted records (bulk load)

Input: list of records sorted by key:

<table>
<thead>
<tr>
<th>3</th>
<th>6</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3</td>
<td>R6</td>
<td>R9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>15</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>R12</td>
<td>R15</td>
<td>R18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>21</th>
<th>24</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>R21</td>
<td>R24</td>
<td>R27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>30</th>
<th>33</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>R30</td>
<td>R33</td>
<td>R36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>39</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>R39</td>
<td>R42</td>
</tr>
</tbody>
</table>

Output: 2-4 B-tree index
B-tree construction
1. Leafs

- Distribute records among blocks – 3 records per block
- Link leafs sequentially
B-tree construction

2. Parent level

- Each parent node can hold at most 4 pointers – but we have 5 leaves
- We cannot put 4 children and 1 child – because each parent node has to hold at least 2 pointers
- We build one parent for 3 nodes, and another parent for 2 nodes
B-tree construction
3. Parent for level 2

- We need to divide keys in the left subtree from the keys in the right subtree
B-tree construction

3. Parent for level 2

- We need to divide keys in the left subtree from the keys in the right subtree
- All keys in the right subtree are >=30
B-tree construction
3. Parent for level 2

- We need to divide keys in the left subtree from the keys in the right subtree
- All keys in the right subtree are >=30
B-tree construction: leave space

- In practice, the nodes will be half-filled to leave space for future insertions
B-tree lookup

Recursive procedure:

• Ends when we are at a leaf. In this case, look among the keys there. If the i-th key is K, then the i-th pointer will contain RID of the desired record.

• If we are at an internal node with keys K_1,K_2,\ldots,K_d, then if $K<K_1$ we call lookup with the first child node, if $K_1\leq K<K_2$ we use the second child, and so on.
B-tree lookup example

Find record with key 24

To record with key 24

RID of record with key 24
B-tree in action

• When data are inserted or removed from a node, its number of child nodes changes.

• In order to maintain the pre-defined capacity range, internal nodes must be joined or split.

• B-tree is a dynamic data structure with a guaranteed upper bound for lookup, insertion and deletion: $O(\log_d N)$ disk I/Os

where

N – total number of leaf nodes (leaf blocks)

d – branching factor
B-tree: range search

• Query: select all records where key is in range $[x,y]$
 • Use x as a search key
 • Once at the leaf: scan the data entries to find x or the first key that is $> x$ (if x is not there)
 • After that, data entries are retrieved sequentially until the first record with key $> y$
B Trees: Summary

• Searching:
 • $\log_d(N)$ – Where d is the order, and N is the maximum total number of entries in all the leafs

• Insertion:
 • Find the leaf to insert into
 • If full, split the node, and adjust index accordingly
 • Similar cost as searching

• Deletion
 • Find the leaf node
 • Delete
 • May not remain half-full; must adjust the index accordingly
 • Either borrow 1 key from the sibling
 • Or merge with the sibling if there are not enough keys to borrow
B-Tree File Organization

• Store the records at the leaves
• This is called a *clustered index* or *clustered file organization*
• Sorted order is maintained dynamically without overflow pages
File organizations that we know

• Heap
• Sequential
• Hash
• Clustered (B-tree with data records at the leaves)
Cost of operations for different file organizations (in disk I/Os)

<table>
<thead>
<tr>
<th></th>
<th>Scan</th>
<th>Equality</th>
<th>Range</th>
<th>Insert</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heap</td>
<td>N</td>
<td>0.5N</td>
<td>N</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Sorted</td>
<td>N</td>
<td>log₂ N</td>
<td>log₂ N + output</td>
<td>log₂ N + N</td>
</tr>
<tr>
<td>3</td>
<td>Hashed</td>
<td>N</td>
<td>1</td>
<td>N</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Clustered</td>
<td>N</td>
<td>logₐ R</td>
<td>logₐ R + num. of result pages</td>
<td>logₐ R + 2</td>
</tr>
</tbody>
</table>

\(N \) - number of data blocks

\(R \) – number of records
More examples of B-tree in action
Lookup

Recursive procedure:
If we are at a leaf, look among the keys there. If the i-th key is K, the i-th pointer will contain RID of the desired record.
If we are at an internal node with keys K_1, K_2, \ldots, K_d, then if $K < K_1$ we follow the first pointer, if $K_1 \leq K < K_2$ we follow the second pointer, and so on.

Try to find a record with search key 40.

Internal node may have 1 key and 2 pointers
Try to insert a search key = 40.
First, lookup for it, in order to find where to insert.

It has to go here, but the node is full!
Beginning of the insertion of key 40

What's the problem?
No parent yet for the new node!

Observe the new node and the redistribution of keys and pointers.
Continuing the Insertion of key 40

We must now insert a pointer to the new leaf into this node. We must also associate with this pointer the key 40, which is the least key reachable through the new leaf. But the node is full. Thus it too must split!
Completing of the Insertion of key 40

• We have to redistribute 3 keys and 4 pointers.
• We leave three pointers in the existing node and give two pointers to the new node. 43 goes to the new node.
• But where the key 40 goes?
• 40 is the least key reachable via the new node.

This is a new node.
Completing of the Insertion of key 40

It goes here! 40 is the least key reachable via the new node.
Insertion explained

• We try to find a place for the new key in the appropriate leaf, and we put it there if there is room.

• If there is no room in the proper leaf, we “split” the leaf into two and divide the keys between the two new nodes, so each is half full or just over half full.
 • Split means “add a new block”

• The splitting of nodes at one level appears to the level above as if a new key-pointer pair needs to be inserted at that higher level.
 • We may thus apply this strategy to insert at the next level: if there is room, insert it; if not, split the parent node and continue up the tree.

• As an exception, if we try to insert into the root, and there is no room, then we split the root into two nodes and create a new root at the next higher level;
 • The new root has the two nodes resulting from the split as its children.

Pseudocode in the book
Suppose we delete key=7.
Deletion

This leaf node is less than half full.
Deletion (Raising a key to parent)

This node is less than half full. So it borrows key 5 from the sibling, and updates parent node.
Suppose we delete now key = 11. No *sibling* with enough keys to borrow.

Note that node (13, 17, 29) is not a sibling – because it has a different parent.
Deletion

We merge, i.e. delete a block from the index. However, the parent ends up having 1 pointer and zero keys.
Deletion

Parent: Borrow pointer from sibling!
Deletion explained

• We find a place of the deleted key in the appropriate leaf, and remove the corresponding entry

• If the leaf node was at a minimum capacity before the deletion, it is now below minimum
 • If its most populous sibling contains more than \(\frac{d}{2} \) children – borrow one and update parent pointer
 • Else if there are no nodes to borrow – merge current node with its sibling

• Update parent pointer. If there are less than \(\frac{d}{2} \) children – borrow key from right sibling
Exercise (at home)

• First, build B-tree from records with sorted keys: 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47

• Insert key 1
• Insert keys 14,15,16
• Delete key 23
• Delete all keys >23 (in turn)