CS 443
Parallel DB & Map Reduce

Adapted fromSuciu & Balazinska
Parallel DBMS

- **Inter-query parallelism**
 - Each query runs on one processor

- **Inter-operator parallelism**
 - A query runs on multiple processors
 - An operator runs on one processor

- **Intra-operator parallelism**
 - An operator runs on multiple processors
 - For both OLTP and Decision Support
 - Main parallelism used in parallel DBMS since 1980’s
Horizontal Data Partitioning

• Have a large table \(R(K, A, B, C) \)
 • Need to partition on a shared-nothing architecture into \(P \) chunks \(R_1, ..., R_P \), stored at the \(P \) nodes
• **Block Partition**: \(\text{size}(R_1) \approx ... \approx \text{size}(R_P) \)
• **Hash partitioned** on attribute \(A \):
 • Tuple \(t \) goes to chunk \(i \), where \(i = \text{h}(t.A) \mod P + 1 \)
• **Range partitioned** on attribute \(A \):
 • Partition the range of \(A \) into \(-\infty = v_0 < v_1 < ... < v_P = \infty\)
 • Equiwidth or equidepth
 • Tuple \(t \) goes to chunk \(i \), if \(v_{i-1} < t.A < v_i \)
Parallel GroupBy

- $R(K,A,B,C)$, how could we compute these GroupBy’s, for each of the partitions
- $\gamma_{A,\text{sum}(C)}(R)$
 - If R is partitioned on A, then each node computes the group-by locally
 - Otherwise, hash-partition $R(K,A,B,C)$ on A, then compute group-by locally:
Performance Metric: Parallel DBMS

- **P** = the number of nodes (processors, computers)
- **Speedup:**
 - More nodes, same data leads to higher speed
- **Scaleup:**
 - More nodes, more data leads to same speed

- **OLTP:** “Speed” = transactions per second (TPS)
- **Decision Support:** “Speed” = query time
Speedup and Scaleup

• The runtime is dominated by the time to read the chunks from disk, i.e. size(R_i)

• If we double the number of nodes P, what is the new running time of \(\gamma_{A,\sum(C)}(R) \) ?

• If we double both P and the size of the relation R, what is the new running time?
Uniform Data v.s. Skewed Data

• **Uniform partition:**
 – $size(R_1) \approx \ldots \approx size(R_P) \approx size(R) / P$
 – Linear speedup, constant scaleup

• **Skewed partition:**
 – For some i, $size(R_i) >> size(R) / P$
 – Speedup and scaleup will suffer
Uniform Data v.s. Skewed Data

• Let R(K,A,B,C); which of the following partition methods may result in skewed partitions?
 • Block partition
 - Uniform
 • Hash-partition
 - On the key K
 - On the attribute A
 - Uniform
 - Assuming perfect uniform hash
 - May be skewed
 • Range-partition
 - On the key K
 - On the attribute A
 - May be skewed
 - Difficult to maintain perfect range-partitioning
Parallel Join?

- $R(A,B)$ join on B with $S(B,C)$
Review: Parallel DBMS

Figure 5 - Master server performs global planning and dispatch

SQL Query

Master server

Parallel query planning & optimization

Parallel query dispatch

Compute cores

Local storage

Network interconnect

Segment servers

From: Greenplum Database Whitepaper
Parallel query plan: tree of parallel operators
- Data streams from one operator to the next
- Typically all cluster nodes process all operators

Can run multiple queries at the same time
- Queries will share the nodes in the cluster

Notice that user does not need to know how his/her SQL query was processed
Cluster Computing

- Large number of commodity servers, connected by high speed, commodity network
- Rack: holds a small number of servers
- Data center: holds many racks
- Massive parallelism
 - 100s, or 1000s, or 10000s servers
Commodity Clusters

- Web data sets can be very large
 - Tens to hundreds of terabytes
- Cannot analyze on a single server
- Standard architecture
 - Cluster of commodity Linux nodes
 - Gigabit ethernet interconnect
- How to organize computations on this architecture?
 - Shared-nothing Parallel DBMS, right?
 - New performance issue: fault-tolerance
 - Mask issues such as hardware failure
Single-node architecture

Node architecture same as in shared nothing parallel DBMS
Cluster Architecture

1 Gbps between any pair of nodes in a rack

Each rack contains 16-64 nodes
Distributed File System (DFS)

- For very large files: TBs, PBs
 - Each file is partitioned into *chunks*, typically 64MB

- Each chunk is replicated several times (≥3), on different racks, for fault tolerance

- Implementations:
 - Google’s DFS: GFS, proprietary
 - Hadoop’s DFS: HDFS, open source

- Typical usage pattern
 - Data is rarely updated in place
 - Reads and appends are common
Map-Reduce

- Google paper published 2004
- Free variant: Hadoop
- Map-reduce = high-level programming model and implementation for large-scale parallel data processing
Data Model

- Based on file processing
- A file = a bag of (key, value) pairs
- A map-reduce program
 - Input: a bag of (inputkey, value) pairs
 - Output: a bag of (outputkey, value) pairs
Map

- User provides the MAP-function:
 - Input: (input key, value)
 - Output: bag of (intermediate key, value)

- System applies the map function in parallel to all (input key, value) pairs in the input file
Reduce

- User provides a REDUCE function:
 - Input: (intermediate key, bag of values)
 - Output: bag of output (values)

- System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function.
Example: Word Count

- We have a large file of words, one word to a line
- Count the number of times each distinct word appears in the file
- Each Document Doc(did, word)
 - The key = document id (did)
 - The value = list of words (word)

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += parseInt(v);
 Emit(AsString(result));
MapReduce: The Map Step

Input key-value pairs

Intermediate key-value pairs

map

...
MapReduce: The Reduce Step

Intermediate key-value pairs

Key-value groups

Output key-value pairs

reduce

reduce

intermediate key-value pairs

key-value groups

output key-value pairs

k

v

k

v

k

v

k

v

k

v

k

v

k

v

k

v

...
Example

- Doc 1: the weather is good
- Doc 2: today is good
- Doc 3: good weather is good.
Map output

- Doc 1:
 - (the 1), (weather 1), (is 1), (good 1).
- Doc 2:
 - (today 1), (is 1), (good 1).
- Doc 3:
 - (good 1), (weather 1), (is 1), (good 1).
Reduce Input

- **Key 1:**
 - (the 1)

- **Key 2:**
 - (is 1), (is 1), (is 1)

- **Key 3:**
 - (weather 1), (weather 1)

- **Key 4:**
 - (today 1)

- **Key 5:**
 - (good 1), (good 1), (good 1), (good 1)
Reduce Output

- Key 1:
 - (the 1)

- Key 2:
 - (is 3)

- Key 3:
 - (weather 2)

- Key 4:
 - (today 1)

- Key 5:
 - (good 4)
This example in SQL

MAP = GROUP BY
REDUCE = Aggregate

Doc(did, word)

SELECT word, sum(1)
FROM Doc
GROUP BY word
Google MR Architecture
Worker

- A worker is a process that executes one task at a time

- Typically there is one worker per processor, hence 4, or 8 per node
File System

- All data transfer between workers occurs through distributed file system
 - Support for split files
 - Workers perform local writes
 - Each map worker performs local or remote read of one or more input splits
 - Each reduce worker performs remote read of multiple intermediate splits
 - Output is left in as many splits as reduce workers
Data Partitioning

- Data partitioned (split) by hash on key
- Each worker responsible for certain hash bucket(s)
- How many workers/splits?
 - Best to have multiple splits per worker
 - Improves load balance
 - If worker fails, splits could be re-distributed across multiple other workers
 - Best to assign splits to “nearby” workers
 - Rules apply to both map and reduce workers
Job vs. Task

- **A Map-Reduce Job**
 - One single “query”, e.g., count the words in all docs
 - More complex queries may consist of multiple jobs

- **A Map Task or a Reduce Task**
 - A group of instantiations of the map-, or reduce-function, which are scheduled on a single worker
Implementation

- There is one master node
- Master partitions input file into M splits, by key
- Master assigns workers (=servers) to the M map tasks, keeps track of their progress
- Workers write their output to local disk, partition into R regions (or intermediate splits)
- Master assigns workers to the R reduce tasks
- Reduce workers read regions from the map workers’ local disks
Fault Tolerance

- Worker failure
 - Master pings workers periodically
 - If down then reassigns the task to another worker
 - Map/reduce tasks committed through master

- Master failure
 - Not covered in original implementation
 - Could be detected by user program or monitor
 - Could recover persistent state from disk
Performance

- **Straggler** = a machine that takes unusually long time to complete one of the last tasks. E.g.:
 - Bad disk forces frequent correctable errors (30MB/s \rightarrow 1MB/s)
 - The cluster scheduler has scheduled other tasks on that machine

- Stragglers are a main reason for slowdown
 - Solution: *pre-emptive backup execution of the last few remaining in-progress tasks*
Other Issues

- Handling bad records
 - Best is to debug and fix data/code
 - If master detects at least 2 task failures for a particular input record, skips record during 3rd attempt
 - Is this an issue in RDBMS?

- Debugging
 - Tricky in a distributed environment
 - Done through log messages and counters
Map-Reduce Summary

- Hides scheduling, fault recovery, and parallelization details
- Scales well, way beyond thousands of machines and terabytes of data
- Flexibility to handle heterogeneous unstructured data
- General enough for expressing many practical problems
One-input two-phase data flow rigid, hard to adapt
- Does not allow for stateful multiple-step processing of records
- Difficult to write more complex queries
 - Need multiple map-reduce jobs
- Procedural programming model requires (often repetitive) code for even the simplest operations (e.g., projection, filtering)
- Opaque nature of the map and reduce functions impedes optimization

Solution: declarative query language!
Declarative languages on MR

- PIG Latin (Yahoo!)
 - New language, like Relational Algebra
 - Open source
- SQL / Tenzing (Google)
 - SQL on MR
 - Proprietary
- Others:
 - Scope (MS): SQL; proprietary
 - DryadLINQ (MS): LINQ; proprietary
 - Clustera (Univ Wisc): SQL; Not publicly available
Parallel DBMS vs MR MapReduce

- **ParallelDBMS - faster**
 - Indexing
 - Physical tuning
 - Can stream data from one op. to the next without blocking

- **MapReduce - fault-tolerant**
 - Can easily add nodes to the cluster (no need to even restart)
 - Uses less memory since processes one key-group at a time
 - Intra-query fault-tolerance thanks to results on disk
 - Handles adverse conditions: e.g., stragglers
 - Arguably more scalable... but also needs more nodes!