
PDP-11 instruction reference
CSC 258

Overall notes

Most numbers in this document are in octal (base 8).

‘‘msb’’ means ‘‘most significant bit’’ (sometimes ‘‘byte’’, but always ‘‘bit’’ in this document).

The ‘‘bit scheme’’ for condition codes is:
N = msb of result
Z = whether the result is zero
V is reset (i.e. V becomes 0)
C is not affected

The ‘‘value scheme’’ for condition codes is:
N,Z are determined by the final result as above
V is determined by whether arithmetic overflow occurred
C is not affected unless specified

The symbol ‘‘0
1’’ in an opcode refers to a 0 for the word version of the instruction and a 1 for the

byte version of the instruction.

Addressing modes

The six bits indicating addressing type are divided into:
• three bits for ‘‘mode’’
• three bits to indicate a register (yielding a register number from 0 to 7, inclusive)

The top two of the three mode bits work as follows:

top two bits octal name assembly syntax EA and other semantics
00_ 0 or 1 register Ri Ri
01_ 2 or 3 autoincrement (Ri)+ [Ri], then Ri←[Ri]+2 or 1
10_ 4 or 5 autodecrement −(Ri) first Ri←[Ri]−2 or 1, then EA=new [Ri]
11_ 6 or 7 index n(Ri) [[R7]]+[Ri], then inc PC by 2

(n follows in next memory word)

The third mode bit is ‘‘indirect’’. It yields one extra indirection. In the assembly syntax, we add
an ‘‘@’’.

Some modes have a special assembly syntax when used with R7:

mode octal name when used assembly
bits with R7 syntax EA and other semantics

010 2 immediate #n EA=[R7], then R7←[R7]+2
011 3 absolute direct @#n EA=[[R7]], then R7←[R7]+2
110 6 relative direct n X=[[R7]], then inc R7, then EA=X+[R7]
111 7 relative indirect @n X=[[R7]], then inc R7, then EA=[X+[R7]]

- 2 -

Zero-operand instructions

Format: opcode
15 0

Mnemonic Opcode Semantics
HALT 000000 Halt CPU until restarted; abort i/o
WAIT 000001 Halt CPU until restarted or interrupted
RESET 000005 Reset all i/o devices
NOP 000240 No operation

One-operand instructions

Format: opcode addr
15 6 5 0

Mnemonic Opcode Semantics Condition code notes
CLR{B} 0

1050 addr ← 0 N,V,C reset; Z set
INC{B} 0

1052 addr ← [addr] + 1 ‘‘value’’ scheme
DEC{B} 0

1053 addr ← [addr] − 1 ‘‘value’’ scheme
ADC{B} 0

1055 addr ← [addr] + [C] ‘‘value’’ scheme;
i.e. add 1 if C=1, add 0 if C=0 C is carry from addition

SBC{B} 0
1056 addr ← [addr] − [C] ‘‘value’’ scheme;

C is ‘‘borrow’’ from subt.
TST{B} 0

1057 set condition codes by [addr] N,Z by [addr]; V,C reset
NEG{B} 0

1054 addr ← −[addr] ‘‘value’’ scheme (overflows
iff was 100000); C reset if
result=0, C set if result≠0

COM{B} 0
1051 addr ← one’s complement of [addr] N,Z by result; V reset;

C set
ROR{B} 0

1060 addr ← rotate [addr] right one bit through N,Z by result; C by rotation;
carry V = new N ⊕ new C

ROL{B} 0
1061 addr ← rotate [addr] left one bit through as ROR{B}

carry
ASR{B} 0

1062 addr ← arithmetic-shift [addr] right one bit as ROR{B}; C = old low bit
ASL{B} 0

1063 addr ← shift [addr] left one bit as ROR{B}; C = old high bit
SWAB 0003 addr ← [addr] with high/low bytes swapped C,V reset; N,V by low byte
(swap bytes) (it’s a word instruction, despite the ‘‘B’’) of result (i.e. by source!!)
SXT (sign- 0067 addr ← all bits [N] (the condition code) N,C,V not affected;
extend) Z set by result

- 3 -

One-and-a-half-operand instructions

Format: opcode reg addr
15 9 8 6 5 0

Note! The ‘‘addr’’ field always comes last in the machine-language format but the target field
(which may be ‘‘addr’’ or ‘‘reg’’, according to the semantics) is what comes last in the assembly-
language format.

Mnemonic Opcode Semantics Condition code notes
MUL 070 reg;reg∨1 ← [reg] × [addr] N, Z describe entire product;

If reg is odd, only the low-order word is V reset;
stored. C set iff low word overflows

DIV 071 reg ← [reg;reg∨1] div [addr] C,V both set if divide by 0;
reg∨1 ← [reg;reg∨1] mod [addr] else V set iff div result
reg must be even. would not fit in reg

ASH 072 reg ← [reg] shifted by low 6 bits of [addr]; V set iff msb of [reg]
shift value is interpreted as signed, where changed during shift;
negative means right C = last bit shifted out

ASHC 073 reg;reg∨1 ← [reg;reg∨1] shifted by V set iff msb changed;
(combined) low 6 bits of [addr], as with ASH C = last bit shifted out
XOR 074 addr ← [reg] ⊕ [addr] ‘‘bit’’ scheme

Tw o-operand instructions

Format: op src dst
15 12 11 6 5 0

Mnemonic Opcode Semantics Condition code notes
MOV{B} 0

11 dst ← [src] ‘‘value’’ scheme; V reset
In MOVB, if dst is reg, is sign-extended.

ADD 06 dst ← [dst] + [src] ‘‘value’’ scheme;
C is carry from addition

SUB 16 dst ← [dst] − [src] ‘‘value’’ scheme;
C is ‘‘borrow’’ from subt.

CMP{B} 0
12 compute [src] − [dst] (not stored) ‘‘value’’ scheme;

N.B. different order from SUB! C is ‘‘borrow’’ from subt.
BIS{B} 0

15 dst ← [dst] ∨ [src] (bitwise) ‘‘bit’’ scheme
(bit set)
BIC{B} 0

14 dst ← [dst] ∧ [src] (bitwise) ‘‘bit’’ scheme
(bit clear)
BIT{B} 0

13 compute [src] ∧ [dst] (bitwise) (not stored) ‘‘bit’’ scheme
(bit test)

- 4 -

Branch instructions
(also see SOB in the following section)

Format: (octal coding doesn’t work out too nicely here)opcode offset
15 8 7 0

Mnemonic Name Binary opcode Branch condition
BR Branch 00000001 unconditional
BNE Branch on not equal 00000010 Z = 0
BEQ Branch on equal 00000011 Z = 1
BPL Branch on plus 10000000 N = 0
BMI Branch on minus 10000001 N = 1
BVC Branch on overflow clear 10000100 V = 0
BVS Branch on overflow set 10000101 V = 1
BHIS Branch on higher than or same as 10000110 C = 0
BCC Branch on carry clear 10000110 C = 0
BLO Branch on lower 10000111 C = 1
BCS Branch on carry set 10000111 C = 1
BGE Branch on greater than or equal to 00000100 N ⊕ V = 0
BLT Branch on less than 00000101 N ⊕ V = 1
BGT Branch on greater than 00000110 Z ∨ (N ⊕ V) = 0
BLE Branch on less than or equal to 00000111 Z ∨ (N ⊕ V) = 1
BHI Branch on higher than 10000010 C ∨ Z = 0
BLOS Branch on lower than or same as 10000011 C ∨ Z = 1

The eight bits of the offset are interpreted as the high eight bits of a nine-bit signed offset whose
last bit is zero. Thus if the condition is met, we do R7 ← [R7] + 2 × offset.

BHI, BHIS (aka BCC), BLO (aka BCS), and BLOS do what they say if the data is interpreted as
unsigned; the use of BLT, BLE, BGT, and BGE tends to interpret the data as two’s-complement.

Other instructions involving transfer of control

Format: according to schema below
Where R is a register, and AA is an address in any of the standard addressing modes yielding an EA
(condition codes are not affected, except by setting the entire PSW where indicated)

Mnemonic Name Octal schema Semantics
JMP Jump 0001AA R7 ← EA (use @ to get [EA])

(can’t use plain register mode if not ‘@’)
SOB Subtract One and 077Rnn R ← [R] − 1

Branch then if [R] ≠ 0, R7 ← [R7] − 2×nn
Note: nn is treated as unsigned; can only
jump backward. Cond codes unchanged.

(table continues)

- 5 -

Other instructions involving transfer of control, continued

Mnemonic Name Octal schema Semantics
JSR Jump to subroutine 004RAA temp ← EA

R6 ← [R6] − 2
[R6] ← [R]
R ← [R7]
R7 ← [temp]

RTS Return from 00020R R7 ← [R]
subroutine R ← [[R6]]

R6 ← [R6] + 2
RTI Return from 000002 R7 ← [[R6]]

interrupt (or trap) R6 ← [R6] + 2
PSW ← [[R6]]
R6 ← [R6] + 2

TRAP Trap 104xyz, x≥4 R6 ← [R6] − 2
[R6] ← [PSW]
R6 ← [R6] − 2
[R6] ← [R7]
R7 ← [34]
PSW ← [36]
This seq. is hereby called ‘‘trap from 34’’.

BPT Breakpoint trap. 000003 R6 ← [R6] − 2
Used by debuggers. [R6] ← [PSW]

R6 ← [R6] − 2
[R6] ← [R7]
R7 ← [14]
PSW ← [16]
i.e. ‘‘trap from 14’’.

IOT I/O trap. Used by 000004 trap from 20 (see above)
OS for I/O calls.

EMT Emulator trap. 104xyz, x≤3 trap from 30 (see above)
Used by OS to
implement fake ops.

RTT Return from trace 000002 same as RTI, but suppresses the
trap immediately-following trace trap.

Typically, [14] will have the T bit clear;
after returning, we want to trap after the
next instruction, but not after the RTT itself
when the previous PSW is restored.

Note that the opcode in the TRAP and EMT ops is the high byte, and the low byte can be
anything (intended to be interpreted by the ISR).

- 6 -

Processor status word (PSW)

The PSW’s high byte contains 11/45-specific stuff about kernel and supervisor modes. The
low byte contains the priority (three highest bits), followed by T, N, Z, V, and C, in that order.

An external interrupt which is not precluded by the CPU priority causes a trap from the vector
address appropriate to the interrupting device (see trap sequence, previous section). Zero is the
normal priority. Sev en is the highest priority; a higher-number interrupt interrupts a lower
priority but not vice versa. (This is the PDP-11 ordering; it differs among CPUs.)

When T is set, the execution of every instruction except for RTT causes a subsequent trace trap.
A trace trap is a trap from 14 (i.e. it’s the same as executing a BPT).

The processor status word is also affected by the following ops:

Mnemonic Name Octal schema Semantics
SPL Set priority level 00023n bits 7-5 of PSW ← n
CLC Clear C 000241 C ← 0
CLV Clear V 000242 V ← 0
CLZ Clear Z 000244 Z ← 0
CLN Clear N 000250 N ← 0
SEC Set C 000261 C ← 1
SEV Set V 000262 V ← 1
SEZ Set Z 000264 Z ← 1
SEN Set N 000270 N ← 1
CCC Clear condition codes 000257 C,V,Z,N ← 0
SCC Set condition codes 000277 C,V,Z,N ← 1

In fact, you can make up your own ‘‘clear’’ and ‘‘set’’ ops in the implied pattern; the last four bits
of the word indicate whether N, Z, V, and/or C are being referred to, in that order. This also
gives us our NOP op (‘‘clear nothing’’).

Alternatively, the PSW can be addressed as location −2, but this should only be done by the OS.

Pseudo-ops and other syntax

Pseudo-ops are lines in your assembly-language program which are instructions to the assembler.
Some of them do not directly correspond to generated code.
They all begin with a period to distinguish them from ops.

Some of the pseudo-ops we will be using are:

.ORG — start assembling at the given address. Example: the next word following a ‘‘.ORG 1000’’
line will be placed at memory address 1000.

.WORD — emit the given value as one word. Example: ‘‘.WORD 264’’ is the same as ‘‘SEZ’’.

.BLKW — emit the stated number of zero words. Example: ‘‘.BLKW 3’’ emits 6 zero bytes.

.BLKB — emit the stated number of zero bytes.

.END — this line must appear as the last line of your assembly language file. It is entirely
unrelated to ‘‘RTS’’. It serves no function and we won’t use it in this course.

A label is an identifier at the beginning of a line, followed by a colon. This causes the address of
the instruction following the label to be entered into the assembler’s symbol table. There is also
a syntax ‘‘var = value’’ (example: ‘‘N = 5’’). The symbol ‘‘.’’ is always the current instruction’s
address. These symbols can be used anywhere an integer can be used.

A semi-colon begins a comment, which extends to the end of the line.

