
(a) (1 point) List all inversions of the array $[2, 4, 7, 5, 1]$.

(b) (2 points) Which array with elements from the set $\{1, 2, \ldots, n\}$ has the most inversions? How many inversions does it have?

(c) (2 point) What is the relationship between the running time of insertion sort and the number of inversions in the input array (write the running time as a function of the number of inversions M and the input size n)? Justify your answer.

(d) (5 points) Give an algorithm running in $\Theta(n \log n)$ that counts the number of inversions in an input array of n elements. Write the pseudocode; justify your algorithm is correct and the running time is $\Theta(n \log n)$.

2. (5 points) Extract Second Largest. Consider a max-priority queue Q implemented using a binary max-heap. We would like to design an $\text{EXTRACTSECONDLARGEST}(Q)$ operation, which returns the second largest key in Q and deletes it from Q. The worst-case running time of this operation must be in $O(\log n)$. We assume that all keys in Q are distinct integers.

(a) (3 points) Write the pseudocode of your $\text{EXTRACTSECONDLARGEST}(Q)$ algorithm. Let Q be an array whose indices start from 1. You can use operations from the textbook and lectures as helpers without describing their details.

(b) (2 points) Explain why your pseudocode works correctly. In particular, explain why the element you extract is the second largest one, and why this operation maintains the heap property. Also explain why the worst-case running time of your algorithm is in $O(\log n)$.

3. (5 points) Heap Delete. The operation $\text{HEAPDELETE}(A, i)$ deletes the item in node i from max-heap A.
(a) (3 points) Write pseudocode for `HEAPDELETE` which runs in time $O(\log n)$ for an n-element max-heap.

(b) (2 points) Explain why your pseudocode works correctly, and why the running time is $O(\log n)$.

4. (15 points) d-ary Heap. A d-ary heap is like a binary heap, except that non-leaf nodes have at most d children instead of 2 children.

(a) (2 points) How would you represent a d-ary heap in an array? In particular, given a node with index i, what are the indices of its parent and children nodes?

(b) (2 points) What is the height of a d-ary heap of n elements in terms of n and d?

(c) (4 points) Write pseudocode for implementing `EXTRACTMAX` in a d-ary max-heap. Analyze its running time in terms of n and d (express the running time using big-O notation and justify your answer).

(d) (4 points) Write pseudocode for implementing `INCREASEKEY(A, i, k)` in a d-ary max-heap. Analyze its running time in terms of n and d (express the running time using big-O notation and justify your answer).

(e) (3 points) Write pseudocode for implementing `INSERT` in a d-ary max-heap. Analyze its running time in terms of n and d (express the running time using big-O notation and justify your answer).

5. (20 points) Reverse Young Tableaus. An $m \times n$ reverse Young tableau is an $m \times n$ matrix such that the entries of each row are in descending order (reversely sorted) from left to right, and the entries of each column are in descending order from top to bottom. Some of the entries of a reverse Young tableau may be $-\infty$, which are treated as nonexistent elements. Thus, a reverse Young tableau can be used to hold $r \leq mn$ finite numbers.

(a) (1 point) Draw a 4×4 reverse Young tableau containing the elements $\{9, 15, 3, 1, 4, 8, 5, 14, 12\}$.

(b) (2 points) Argue that an $m \times n$ reverse Young tableau Y is empty if $Y[1, 1] = -\infty$. Argue that Y is full if $Y[m, n] > -\infty$.

(c) (5 points) Write pseudocode for implementing `EXTRACTMAX` on a nonempty $m \times n$ reverse Young tableau, running in time $O(m + n)$ (justify the running time).

(d) (4 points) Write pseudocode for implementing `INSERT`, which adds a new element into a nonfull $m \times n$ reverse Young tableau in $O(m + n)$ time (justify the running time).

(e) (5 points) Write pseudocode for implementing `SEARCH` to determine whether a given number is stored in a given $m \times n$ reverse Young tableau in $O(m + n)$ time (justify the running time).

(f) (3 points) Write pseudocode of an algorithm to sort n^2 numbers in an $n \times n$ reverse Young tableau in $O(n^3)$ time, using no other sorting method as a subroutine (justify the running time).
6. (5 points) **Find the Median.** Write pseudocode for `SEARCHMEDIAN(x)` which solves the following problem in $O(n)$ time: Given a binary search tree rooted at x, return the node with the median key. As in the lecture, each node has the following attributes: key, left, right, parent. Suppose there are n nodes in the tree; the median key is the $\lceil n/2 \rceil$-th value when all the keys of the tree is fully sorted. (Note that the number of nodes is not known in advance; the only parameter passed in is the root node x.) Justify your algorithm is correct, and the running time is $O(n)$.