CSC236 Week 6, Tutorial 4 notes

Alex Francois-Nienaber

Derive a closed form for the following recurrence using the method of repeated substitution

$$
f(n)= \begin{cases}2 & \text { if } n=0 \\ 3 & \text { if } n=1 \\ 3 f(n-1)-2 f(n-2) & \text { if } n>1\end{cases}
$$

1 step 1: unwinding

I mentioned in tutorial that unwinding can be thought of as expanding the expression (by "digging down" the recursion), then simplifying (collapsing) it:

```
\(f(n)=3 f(n-1)-2 f(n-2) \quad\) simplified
\(f(n)=3[3 f(n-2)-2 f(n-3)]-2 f(n-2) \quad\) expanding
\(f(n)=9 f(n-2)-6 f(n-3)-2 f(n-2) \quad\) simplifying
\(f(n)=7 f(n-2)-6 f(n-3) \quad\) simplified
\(f(n)=7[3 f(n-3)-2 f(n-4)]-6 f(n-3) \quad\) expanding
\(f(n)=21 f(n-3)-14 f(n-4)-6 f(n-3) \quad\) simplifying
\(f(n)=15 f(n-3)-14 f(n-4) \quad\) simplified
```

...

2 step 2: general form

Let's have a look at those simplified guys:
$f(n)=3 f(n-1)-2 f(n-2) \quad$ simplified $f(n)=7 f(n-2)-6 f(n-3) \quad$ simplified $f(n)=15 f(n-3)-14 f(n-4)$
simplified
What can we predict about the next one?
Well the factor of the first term seems to always be a power of 2 minus 1 .
$f(n)=\left[2^{2}-1\right] f(n-1)-2 f(n-2)$
$f(n)=\left[2^{3}-1\right] f(n-2)-6 f(n-3)$
$f(n)=\left[2^{4}-1\right] f(n-3)-14 f(n-4)$
And you get the drift: the factor of the second term is a power of 2 minus 2 . So, without "unwinding" I can predict that the next simplified form will be:
$f(n)=\left[2^{5}-1\right] f(n-4)-\left[2^{5}-2\right] f(n-5)$
$f(n)=31 f(n-4)-30 f(n-5)$
Sweet. This means there is (seemingly) no point to "unwind" any further, we can conjecture that:
$f(n)=\left[2^{i+1}-1\right] f(n-i)-\left[2^{i+1}-2\right] f(n-i-1)$
general form after some iterations

3 step 3: clever substitution(s)

Now, we want to get rid of the $f(n-\mathrm{bla})$ guys inside the expression of f. The only way to do this without magic is to get down to the base case(s). So let's do some "clever" substitutions:
$f(n)=\left[2^{i+1}-1\right] f(n-i)-\left[2^{i+1}-2\right] f(n-i-1) \quad I$ uncleverly chose a bad i, we need a better one
$f(n)=\left[2^{i}-1\right] f(n-i+1)-\left[2^{i}-2\right] f(n-i+1-1)$
$f(n)=\left[2^{i}-1\right] f(n-i+1)-\left[2^{i}-2\right] f(n-i)$
substitute $i-1$ for i
$f(i)=\left[2^{i}-1\right] f(i-i+1)-\left[2^{i}-2\right] f(i-i)$ now we can get ourbase
$f(i)=\left[2^{i}-1\right] f(1)-\left[2^{i}-2\right] f(0)$
$f(i)=\left[2^{i}-1\right] 3-\left[2^{i}-2\right] 2$
$f(i)=(3) 2^{i}-3-(2) 2^{i}+4$
$f(i)=2^{i}+1$
In this case we are done because the last substitution is pretty obvious (substitute n for i):
$f(n)=2^{n}+1$

4 extra step: sanity check

Let's check if our closed form works:
$f(2)=2^{2}+1=5$
$f(3)=2^{3}+1=9$
$f(4)=2^{4}+1=17$
Check that this corresponds to the values the original form gives you and you are done.

