CSC236 Week 3, Tutorial 2 notes

Alex Francois-Nienaber

Use a variation of simple induction to prove that for most natural numbers n, any set of n elements has 2^{n-1} subsets with an odd number of elements

1 step 1: define the predicate

Call $\mathrm{P}(\mathrm{n})$ the predicate: "any set of n elements has 2^{n-1} subsets with an odd number of elements"

Can we write this more formally? There is already notation for the set of all subsets of a set S , a.k.a. the powerset of $\mathrm{S}: \mathcal{P}(\mathcal{S})$. Let's call $\mathcal{P}_{\text {odd }}(S)$ the set of all subsets (of a set S) containing an odd number of elements. Let's also define $\mathcal{P}_{\text {even }}(S)$ to be the set of all subsets (of a set S) containing an even number of elements (it might come in handy in the proof). Notice that for a given S, we have $\mathcal{P}_{\text {odd }}(S) \cup \mathcal{P}_{\text {even }}(S)=\mathcal{P}(\mathcal{S})$ and $\mathcal{P}_{\text {odd }}(S) \cap \mathcal{P}_{\text {even }}(S)=\emptyset$.

Now we can define $\mathrm{P}(\mathrm{n})$ as the predicate: $" \forall S,|S|=n \Rightarrow\left|\mathcal{P}_{\text {odd }}(S)\right|=2^{n-1 "}$

2 step 2: convince yourself it will hold for most \mathbf{n}

Does $\mathrm{P}(0)$ hold? $2^{0-1}=2^{-1}=1 / 2$. A set cannot have a "half-element" so $\mathrm{P}(0)$ is nonsense.
Does $\mathrm{P}(1)$ hold? $\mathcal{P}(\{\pi\})=\{\emptyset, \pi\}$; so $\mathcal{P}_{\text {odd }}(\{\pi\})=\{\pi\}$ (the empty set has 0 elements and 0 is even). And $2^{1-1}=2^{0}=1$. So it seems that $\mathrm{P}(1)$ does hold.

Check it for $\mathrm{P}(2)$ and so on until you are convinced.

3 step 3: prove it

Now that the preliminary work is done, let's use simple induction to prove $\mathrm{P}(\mathrm{n})$ for all n except 0 .
Call $P(n)$ the predicate: ${ } \forall S S,|S|=n \Rightarrow\left|\mathcal{P}_{\text {odd }}(S)\right|=2^{n-1 "}$
Proof. Simple induction

Basis:

Assume S, such that $|S|=1$. Call π its only element, thus $S=\{\pi\}$
Then $\mathcal{P}(S)=\{\emptyset, \pi\}$
Then $\mathcal{P}_{\text {odd }}(S)=\{\pi\}$
Then $\left|\mathcal{P}_{\text {odd }}(S)\right|=1=2^{0}=2^{1-1}$
Then $\forall S,|S|=1 \Rightarrow\left|\mathcal{P}_{\text {odd }}(S)\right|=2^{1-1}$
Thus P(1)

Inductive Reasoning:

Assume n , a natural number greater than 0 such that $\mathrm{P}(\mathrm{n})$.
Assume S such that $|S|=n+1$. Call X a subset of S and π an element of S such that $S=X \cup\{\pi\}$ with $\pi \notin X$.

Then by the induction hypothesis: $\left|\mathcal{P}_{\text {odd }}(X)\right|=2^{n-1}$
Recall from lecture that $|\mathcal{P}(X)|=2^{n}$. And, since by definition $\mathcal{P}(X)=\mathcal{P}_{\text {odd }}(X) \cup \mathcal{P}_{\text {even }}(X)$,
we have $\left|\mathcal{P}_{\text {even }}(X)\right|=2^{n-1}$
Also from lecture: $\mathcal{P}(X \cup\{\pi\})=\mathcal{P}(X) \cup\{s \cup\{\pi\} \mid s \in \mathcal{P}(X)\}$
$(\{s \cup\{\pi\} \mid s \in \mathcal{P}(X)\}$ is what I called NEWSTUFF in tutorial).
So we have:

$$
\begin{aligned}
& \mathcal{P}(S)=\mathcal{P}(X) \cup\{s \cup\{\pi\} \mid s \in \mathcal{P}(X)\} \\
& \mathcal{P}(S)=\mathcal{P}_{\text {odd }}(X) \cup \mathcal{P}_{\text {even }}(X) \cup\{s \cup\{\pi\} \mid s \in \mathcal{P}(X)\} \\
& \mathcal{P}(S)=\mathcal{P}_{\text {odd }}(X) \cup \mathcal{P}_{\text {even }}(X) \cup\left\{s \cup\{\pi\} \mid s \in \mathcal{P}_{\text {odd }}(X)\right\} \cup\left\{s \cup\{\pi\} \mid s \in \mathcal{P}_{\text {even }}(X)\right\}
\end{aligned}
$$

We have $\left|\mathcal{P}_{\text {odd }}(X)\right|=\left|\left\{s \cup\{\pi\} \mid s \in \mathcal{P}_{\text {odd }}(X)\right\}\right|=2^{n-1}$ (since we are adding the element π to every set in $P_{o d d}(X)$ so it doesn't change the number of sets in $\left.\left\{s \cup\{\pi\} \mid s \in \mathcal{P}_{\text {odd }}(X)\right\}\right)$. Same argument for $\mathcal{P}_{\text {even }}(X)$.

Finally $\left\{s \cup\{\pi\} \mid s \in \mathcal{P}_{\text {odd }}(X)\right\}$ contains only even subsets, and $\left\{s \cup\{\pi\} \mid s \in \mathcal{P}_{\text {even }}(X)\right\}$ contains only odd subsets because by adding a single element to a set, if it had an odd size it will have an even size and vice-versa. Hence:
$\mathcal{P}_{\text {odd }}(S)=\mathcal{P}_{\text {odd }}(X) \cup\left\{s \cup\{\pi\} \mid s \in \mathcal{P}_{\text {even }}(X)\right\}$
And since $\mathcal{P}_{\text {odd }}(X) \cap\left\{s \cup\{\pi\} \mid s \in \mathcal{P}_{\text {even }}(X)\right\}=\emptyset$, we have:
$\left|\mathcal{P}_{\text {odd }}(S)\right|=\left|\mathcal{P}_{\text {odd }}(X)\right|+\left|\left\{s \cup\{\pi\} \mid s \in \mathcal{P}_{\text {even }}(X)\right\}\right|$
$\left|\mathcal{P}_{\text {odd }}(S)\right|=2^{n-1}+2^{n-1}=2^{n}$

Then $\mathrm{P}(\mathrm{n}+1)$
Then $P(n) \Rightarrow P(n+1)$.

Conclusion:

By Simple Induction: $\forall n \in \mathbb{N}-\{0\}, P(n)$

