CSC236 fall 2014, Assignment 2

Due November 3rd, 10 p.m.
The aim of this assignment is to work with recurrences, to notice the effect of changing the strength of a predicate being proven by Induction, and to get an early start on thinking about deterministic finite state automata (DFSAs) in a familiar concrete setting (as Python programs).

You may work in groups of no more than three students, and you should produce a single solution in a PDF file named a2.pdf, submitted to MarkUs.
You will receive 20% of the marks for any question (or part of a question) that you either leave blank or for which you write "I cannot answer this."

1. Define function f by

$$
f(n)= \begin{cases}10, & \text { if } n=0 \\ 3 f(\lfloor 2 n / 5\rfloor)+6 n^{4} & \text { if } n \geq 1\end{cases}
$$

Prove there is a real number c, such that $f(n) \leq c n^{4}$ for most natural numbers n.
DO NOT USE THE MASTER THEOREM.
2. Consider this recurrence T :

$$
T(n)= \begin{cases}3, & \text { if } n=1 \\ 2+T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil) & \text { if } n \geq 2\end{cases}
$$

For each natural number n, let $P(n)$ be: $T(n) \leq T(n+1)$.

You will prove, by Complete Induction, that P is true for all positive natural numbers.
DO NOT PROVE the (seemingly) more general result $1 \leq m \leq n \rightarrow T(m) \leq T(n)$, NOR ANY OTHER result by Induction.
To practice for the proof, parts (a) and (b) ask you to show the Complete Inductive Step for two explicit numbers.
(a) Write out $P(236)$ (simply substitute 236 for n).

Determine an earlier value, or values, of k so that assuming $P(k)$ for those values allows you to prove $P(236)$.
Write out that/those $P(k)$ explicitly, and use that to prove $P(236)$.
(b) Repeat the previous part, but for $P(237)$.
(c) Prove, by Complete Induction, that P is true for all positive natural numbers.
3. Read dfsa.py, and try running it. Once you understand it, create new DFSA instances:
times_three_a: Accepts lists of Symbols such that: the number of as in the list is a multiple of 3.
Rejects all other lists.
first_last_a: Accepts lists of Symbols such that: the first and last symbol is an a.
Rejects all other lists.

