CSC 236 - Fall 2014
 Assignment 2
 Question 1 and 2 Solutions

1. Claim: $f(n) \leq 236 \cdot n^{4}$ for all positive natural numbers n.

For $n \in \mathbb{N}$, let $P(n)$ be: $f(n) \leq 236 \cdot n^{4}$. The claim is: $\forall n \in \mathbb{N}, n \geq 1 \rightarrow P(n)$.
Proof. By Complete Induction.
Base Cases $P(1), P(2)$:
$f(1)=3 f\left(\left\lfloor\frac{2 \cdot 1}{5}\right\rfloor\right)+6 \cdot 1^{4}=3 f(0)+6=36 \leq 236=236 \cdot 1^{4}$.
$f(2)=3 f\left(\left\lfloor\frac{2 \cdot 2}{5}\right\rfloor\right)+6 \cdot 2^{4}=3 f(0)+6 \cdot 16=30+96 \leq 200 \leq 236 \leq 236 \cdot 2^{4}$.
Inductive Step. Let $n \geq 3$:
(IH) Assume that for every natural number k, if $1 \leq k<n$ then $P(k)$.
Note that:
(a) The second clause of the definition of f applies to $f(n)$, since $n \geq 3 \geq 1$.
(b) The (IH) for $k=\left\lfloor\frac{2 n}{5}\right\rfloor$ is: $f\left(\left\lfloor\frac{2 n}{5}\right\rfloor\right) \leq 236 \cdot\left(\left\lfloor\frac{2 n}{5}\right\rfloor\right)^{4}$.

The (IH) actually applies for $\left\lfloor\frac{2 n}{5}\right\rfloor$, since $1 \leq\left\lfloor\frac{2 n}{5}\right\rfloor<n$ when $n \geq 3$:
i. $1=\left\lfloor\frac{2 \cdot 3}{5}\right\rfloor \leq\left\lfloor\frac{2 n}{5}\right\rfloor$.
ii. $\left\lfloor\frac{2 n}{5}\right\rfloor=\left\lfloor n-\frac{3 n}{5}\right\rfloor \leq\left\lfloor n-\frac{3 \cdot 3}{5}\right\rfloor \leq\lfloor n-1\rfloor=n-1<n$.

Then $P(n)$ is true because:

$$
\begin{aligned}
f(n) & =3 f\left(\left\lfloor\frac{2 n}{5}\right\rfloor\right)+6 n^{4}[\text { from definition, see note (a)] } \\
& \leq 3 \cdot 236 \cdot\left(\left\lfloor\frac{2 n}{5}\right\rfloor\right)^{4}+6 n^{4}[\text { from }(\mathrm{IH}), \text { see note }(\mathrm{b})] \\
& \leq 3 \cdot 236 \cdot\left(\frac{2 n}{5}\right)^{4}+6 n^{4} \\
& \leq 1000 \cdot\left(\frac{n}{2}\right)^{4}+6 n^{4} \\
& =\frac{1000}{16} \cdot n^{4}+6 n^{4} \\
& \leq 100 n^{4}+6 n^{4} \\
& \leq 236 n^{4}
\end{aligned}
$$

2.

(a) $P(236): T(236) \leq T(237)$.
$T(236)=2+T\left(\left\lfloor\frac{236}{2}\right\rfloor\right)+T\left(\left\lceil\frac{236}{2}\right\rceil\right)=2+T(118)+T(118)$.
$T(237)=2+T\left(\left\lfloor\frac{237}{2}\right\rfloor\right)+T\left(\left\lceil\frac{237}{2}\right\rceil\right)=2+T(118)+T(119)$.
Assuming $P(118)$ would prove $P(236)$.
Suppose $P(118)$. Then $T(118) \leq T(119)$. So $T(236)=2+T(118)+T(118) \leq 2+T(118)+T(119)=T(237)$.
(b) $P(237): T(237) \leq T(238)$.
$T(237)=2+T\left(\left\lfloor\frac{237}{2}\right\rfloor\right)+T\left(\left\lceil\frac{237}{2}\right\rceil\right)=2+T(118)+T(119)$.
$T(238)=2+T\left(\left\lfloor\frac{238}{2}\right\rfloor\right)+T\left(\left\lceil\frac{238}{2}\right\rceil\right)=2+T(119)+T(119)$.
Assuming $P(118)$ would prove $P(237)$.
Suppose $P(118)$. Then $T(118) \leq T(119)$. So $T(237)=2+T(118)+T(119) \leq 2+T(119)+T(119)=T(238)$.
(c) Base Case $P(1): T(1)=3 \leq 2+3+3=2+T(1)+T(1)=2+T\left(\left\lfloor\frac{2}{2}\right\rfloor\right)+T\left(\left\lceil\frac{2}{2}\right\rceil\right)=T(2)=T(1+1)$.

Inductive Step. Let $n \geq 2$:
(IH) Assume that for every natural number k, if $1 \leq k<n$ then $P(k)$.
Note that:
i. If n is even: $\frac{n}{2}$ is an integer.

Then since $n \geq 2: 1 \leq \frac{n}{2}<\frac{n}{2}+\frac{n}{2}=n$.
So by the (IH) for $\frac{n}{2}: T\left(\frac{n}{2}\right) \leq T\left(\frac{n}{2}+1\right)$.
ii. If n is odd: $\frac{n-1}{2}$ is an integer.

And since also $n \geq 2: n \geq 3$.
Then since $n \geq 3: 1=\frac{3-1}{2} \leq \frac{n-1}{2}<\frac{n-1}{2}+\frac{n+1}{2}=n$.
So by the (IH) for $\frac{n-1}{2}: T\left(\frac{n-1}{2}\right) \leq T\left(\frac{n-1}{2}+1\right)$.
Now $P(n)$ is true because:
Case n is even:
Then $\frac{n}{2}$ is an integer.
So each of $\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil$, and $\left\lfloor\frac{n+1}{2}\right\rfloor$ (which is equal to $\left\lfloor\frac{n}{2}+\frac{1}{2}\right\rfloor$), are equal to $\frac{n}{2}$.
And $\left\lceil\frac{n+1}{2}\right\rceil=\left\lceil\frac{n}{2}+\frac{1}{2}\right\rceil=\frac{n}{2}+1$.
So:

$$
\begin{aligned}
T(n) & \left.=2+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+T\left(\left\lceil\frac{n}{2}\right\rceil\right) \text { [by definition of } T\right] \\
& =2+T\left(\frac{n}{2}\right)+T\left(\frac{n}{2}\right) \\
& \leq 2+T\left(\frac{n}{2}\right)+T\left(\frac{n}{2}+1\right)[\text { from (IH), see note i] } \\
& =2+T\left(\left\lfloor\frac{n+1}{2}\right\rfloor\right)+T\left(\left\lfloor\frac{n+1}{2}\right\rceil\right) \\
& =T(n+1)[\text { by definition of } T]
\end{aligned}
$$

Case n is odd:
Then $\frac{n-1}{2}$ is an integer.
So each of $\left\lceil\frac{n}{2}\right\rceil$ (which is equal to $\left\lceil\frac{n-1}{2}+\frac{1}{2}\right\rceil$), $\left\lfloor\frac{n+1}{2}\right\rfloor$ (which is equal to $\left\lfloor\frac{n-1}{2}+1\right\rfloor$), and $\left\lceil\frac{n+1}{2}\right\rceil$ (which is equal to $\left\lceil\frac{n-1}{2}+1\right\rceil$), are equal to $\frac{n-1}{2}+1$.
And $\left\lfloor\frac{n}{2}\right\rfloor=\left\lfloor\frac{n-1}{2}+\frac{1}{2}\right\rfloor=\frac{n-1}{2}$.
So:

$$
\begin{aligned}
T(n) & \left.=2+T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+T\left(\left\lceil\frac{n}{2}\right\rceil\right) \text { [by definition of } T\right] \\
& =2+T\left(\frac{n-1}{2}\right)+T\left(\frac{n-1}{2}+1\right) \\
& \leq 2+T\left(\frac{n-1}{2}+1\right)+T\left(\frac{n-1}{2}+1\right)[\text { from (IH), see note ii] } \\
& =2+T\left(\left\lfloor\frac{n+1}{2}\right\rfloor\right)+T\left(\left\lfloor\frac{n+1}{2}\right\rceil\right) \\
& =T(n+1)[\text { by definition of } T]
\end{aligned}
$$

