
CSC236 fall 2014, Assignment 1

Due October 3rd, 10 p.m.

The aim of this assignment is to allow you to explore some problems containing recursive components, and

then use induction or well-ordering to solve those probkems.

There are 3 questions (be sure to look at page 2). You may work in groups of no more than three

students, and you should produce a single solution in a PDF �le named a1.pdf, submitted to MarkUs.

You will receive 20% of the marks for any question (or pat of a question) that you either leave blank or for

which you write \I cannot answer this."

1. We've shown for m = 3 or 4 and most natural numbers n, that mn � nm. It's tedious to repeat this

proof for all the natural numbers m > 1, so use induction on n to prove:

8m 2 N; 9k 2 N; 8n 2 N; (m > 1 ^ n � k)) mn � nm

Hint #1: You are proving a claim with multiple quanti�ers, but you only need induction for the

innermost, 8n 2 N.
Hint #2: You may �nd it useful to notice that

(n+ 1)m =

�
n+ 1

n

�
m

� nm = (1 + 1=n)
m � nm

2. Consider the following equation:

(
p
5 + 2)(

p
5� 2) = 1

You can complete parts (a) and (b) before you learn about the Principle of Well Ordering. Once you've

learned the PWO, you can complete (c).

(a) Re-write the equation until you have an equation with
p
5 on the left and a ratio of two expressions

involving
p
5 on the right.

Hint #1: Don't multiply out the bracketed expressions on the left | you'll lose the
p
5s.

Hint #2: There are two similar ways to do this, yielding di�erent expressions on the right.

(b) Assume there are natural numbers m and n such that
p
5 = m=n. Substitute m=n for

p
5 in your

equation from (a). Simplify the ratio on the right hand side, to get a fraction of integers with the

denominator a natural number less than n. If this doesn't work, go back to (a) and derive the

other expression, then try that one.

Show your substitution and simpli�cation, and explain why the denominator is less than n.

(c) Use the Principle of Well Ordering to derive a contradiction from the assumption in the previous

part. What can you conclude?

1

https://markus.cdf.toronto.edu/csc236-2014-09/


3. Read over, and experiment with, the Python function is b list:

def is_b_list(x):

"""(object) -> bool

Return whether x is a binary list.

>>> is_b_list("b_list")

False

>>> is_b_list(0)

True

>>> is_b_list([0, 0])

True

>>> is_b_list([[0]])

False

"""

return (x == 0 or

(isinstance(x, list) and len(x) == 2

and all([is_b_list(y) for y in x])))

De�ne the size of a binary list as the number of left brackets in its Python representation, i.e. the

total number of list objects in the binary list. So 0 has size 0 and [0, 0] has size 1.

You can complete part (a) before we �nish covering examples of induction. The particular Inductive

Principle and associated proof form you'll rely on in (b) has a special name: \complete" induction. If

you work on part (b) before we cover that principle you should try to convince yourself by inductive

reasoning. The principle will then match your reasoning or help you complete your reasoning.

(a) Experiment until you �nd a formula (probably recursive) that computes the number of di�erent

binary lists of size s. Notice that if you call your formula C(s), then C(0) computes 1 and C(1)

also computes 1.

(b) Use complete induction to prove that your C(s) correctly computes the number of di�erent binary

lists of size s
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