
CSC236 fall 2014, Assignment 1

sample solutions and notes

Due October 3rd, 10 p.m.

1. We've shown for m = 3 or 4 and most natural numbers n, that mn � nm. It's tedious to repeat this

proof for all the natural numbers m > 1, so use induction on n to prove:

8m 2 N; 9k 2 N; 8n 2 N; (m > 1 ^ n � k)) mn � nm

Hint #1: You are proving a claim with multiple quanti�ers, but you only need induction for the

innermost, 8n 2 N.
Hint #2: You may �nd it useful to notice that

(n+ 1)m =

�
n+ 1

n

�m
� nm = (1 + 1=n)

m � nm

Sample Solution: After some experimentation, it looks as though with the exception of m = 2 we have

mn � nm provided n � m. So we can prove the result for m = 2 as a special case.

Also, as a tutorial exercise this week we proved that for n � 3, (1 + 1=n)n � n, and this turns out to

be useful. Put these together for a proof:

Proof (by induction on n): 8m 2 N;9k 2 N; 8n 2 N; (m > 1 ^ n � k)) mn � nm.

Assume m is an arbitrary natural number. We de�ne a predicate

P (n) : mn � nm

Case 0: assume m = 2: Pick k = 4, a natural number. We must show that for all natural numbers

n � 4, P (n) is true.

Base case: If n = k = 4, then 24 = 42 = n4, so P (4) is true.

Induction step: Assume that n is a generic natural number greater than or equal to 4, and that

P (n) is true, that is mn � nm (Induction Hypothesis). We must show that P (n+ 1) follows

from this.

Then

2n+1 = 2� 2n � 2� n2 #by IH

� (1 + 1=4)2 � n2 #since 2 >
25

16

� (1 + 1=n)2 � n2 #since (1 + 1=4) � (1 + 1=n) if n � 4

=

�
n+ 1

n

�2
� n2 = (n+ 1)2

So, P (n+ 1) follows from P (n)

Conclude that for all natural numbers n � k = 4, mn � nm, by the principle of induction.

Thus our claim holds when m = 2.
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Case 1: assume m > 2: Pick k = m and note that, by the result from tutorial exercise, for m � 3.

(1 + 1=m)m � m

We need to show that for all natural numbers n greater than or equal to k = m, P (n) is true.

Assume n is an arbitrary natural number greater than or equal to m, and that P (n) is true, that

is mn � nm. We need to prove that mn+1 � (n+ 1)m follows from this.

Base case, n = k = m: mn = mm � nm, so P (k) is true.

Induction step: Assume n is an arbitrary natural number greater than or equal to m, and that

mn � nm, that is P (n) (Induction Hypothesis). We must show that P (n + 1) follows from

this.

Then

mn+1 = m�mn � m� nm #by the Induction Hypothesis

� (1 + 1=m)m � nm #by tutorial exercise, m � (1 + 1=m)m

� (1 + 1=n)m � nm #since n � m; 1=m � 1=n

=

�
n+ 1

n

�m
� nm = (n+ 1)m

So P (n+ 1) follows from P (n)

Conclude that for all natural numbers n � m, mn � nm, by the principle of induction. Thus

our claim holds for an arbitrary m � 3.

Since our claim holds when m = 2 and m � 2, it holds for all natural numbers m greater than 1.

2. Consider the following equation:

(
p
5 + 2)(

p
5� 2) = 1

You can complete parts (a) and (b) before you learn about the Principle of Well Ordering. Once you've

learned the PWO, you can complete (c).

(a) Re-write the equation until you have an equation with
p
5 on the left and a ratio of two expressions

involving
p
5 on the right.

Hint #1: Don't multiply out the bracketed expressions on the left | you'll lose the
p
5s.

Hint #2: There are two similar ways to do this, yielding di�erent expressions on the right.

Sample solution: There are two like equations, depending on whether you divide 1 by (
p
5� 2) or

by (
p
5 + 2):

p
5 =

5� 2
p
5p

5� 2

p
5 =

5 + 2
p
5p

5 + 2

There's no reason (yet) to prefer one equation over the other.

(b) Assume there are natural numbers m and n such that
p
5 = m=n. Substitute m=n for

p
5 in your

equation from (a). Simplify the ratio on the right hand side, to get a fraction of integers with the

denominator a natural number less than n. If this doesn't work, go back to (a) and derive the

other expression, then try that one.

Show your substitution and simpli�cation, and explain why the denominator is less than n.

Sample solution: Substitute m=n, and then simply so the denominator is simple, yielding two

possibilities:

p
5 =

5� 2
p
5p

5� 2
becomes

m

n
=

5� 2(m=n)

m=n� 2
=

5n� 2m

m� 2n

p
5 =

5 + 2
p
5p

5 + 2
becomes

m

n
=

5 + 2(m=n)

(m=n) + 2
=

5n+ 2m

m+ 2n
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Since 22 = 4 < 5 < 9 = 32, we know that 2 <
p
5 < 3, so if m=n =

p
5, then m =

p
5n, in

other words 2n < m < 3n. Subtracting 2n from this inequality gives us:

0 < m� 2n < n

So, the denominator of the �rst equation is a natural number less than n. We'll use that one!

(c) Use the Principle of Well Ordering to derive a contradiction from the assumption in the previous

part. What can you conclude?

Sample solution: In the previous part we assumed there were natural numbers m;n such that

m=n =
p
5. A consequence of that assumption is that

R = fn 2 N j 9m 2 N;m=n =
p
5g

. . . is not empty | it contains at least our assumed n. By the Principle of Well Ordering,

since R is a non-empty subset of N, it has a smallest element n0, with a corresponding m0

so that m0=n0 =
p
5. By the previous question we have

m0

n0
=

5n0 � 2m0

m0 � 2n0

Oops |m0�2n0 is a natural number that quali�es for membership in R, since the numerator

5n0 � 2m0 must be a non-negative integer (the denominator is, and m=n is positive). It is

smaller than n0, a contradiction. This means that our assumption that there are natural

numbers m;n such that m=n =
p
5 is false. Indeed,

p
5 is irrational.

3. Read over, and experiment with, the Python function is b list:

def is_b_list(x):

"""(object) -> bool

Return whether x is a binary list.

>>> is_b_list("b_list")

False

>>> is_b_list(0)

True

>>> is_b_list([0, 0])

True

>>> is_b_list([[0]])

False

"""

return (x == 0 or

(isinstance(x, list) and len(x) == 2

and all([is_b_list(y) for y in x])))

De�ne the size of a binary list as the number of left brackets in its Python representation, i.e. the

total number of list objects in the binary list. So 0 has size 0 and [0, 0] has size 1.

You can complete part (a) before we �nish covering examples of induction. The particular Inductive

Principle and associated proof form you'll rely on in (b) has a special name: \complete" induction. If

you work on part (b) before we cover that principle you should try to convince yourself by inductive

reasoning. The principle will then match your reasoning or help you complete your reasoning.
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(a) Experiment until you �nd a formula (probably recursive) that computes the number of di�erent

binary lists of size s. Notice that if you call your formula C(s), then C(0) computes 1 and C(1)

also computes 1.

Sample solution: There is a single binary list of size 0: 0.

There is also a single binary list of size 1: [0, 0].

There are two binary lists of size 2: [0, [0, 0]] and [[0, 0], 0].

There are 5 binary lists of size 3:

[0, [0, [0, 0]]] [0, [[0, 0], 0]]

[[0, 0], [0, 0]]

[[0, [0, 0]], 0] [[[0, 0], 0], 0]

They can be organized �rst by those with a binary list of size 0 at element 0 paired with a

binary list of size 2 at element 1, then those with a binary list of size 1 at both elements 0

and 1, then those with a binary list of size 2 at element 0 paired with a binary list of size 0

at element 1. This suggests a general formula for computing the total number of binary lists

of size s:

C(s) =

(
1 if s = 0P

s�1

i=0
C(i)C(s� i� 1) otherwise

(b) Use complete induction to prove that your C(s) correctly computes the number of di�erent binary

lists of size s

Sample solution: I need to prove P (s): that for every natural number s, the formula C(s) correctly

computes the number of di�erent binary list sof size s

Assume that P (k) is true for every natural number k less than s.

Case 0, assume s = 0: There is a single binary list of size 0, the binary list 0, so C(0) = 1

correctly computes the number of such lists.

Case 1, assume s > 0: A binary list of size s > 0 contains a binary list at index 0 of size k for

some natural number 0 � k < s, and a binary list at index 1 of size s� 1� k, since the

number of left brackets in their Python representation must add up to s � 1. For any

particular k in [0; s�1] there are C(k)�C(s�1�k) combinations of lists at indices 0 and
1, since 0 � k; s� 1� k < s and our assumption is that C(k) and C(s� 1� k) correctly

compute the number of binary lists of these sizes. Summing over all con�gurations from

lists at index 0 having size 0 to lists at index 0 having size s� 1 gives us

C(s) =

(
1 if s = 0P

s�1

i=0
C(i)C(s� i� 1) otherwise

In both possible cases, P (n) follows from P (k) for all k 2 N; k < n.

Since I was reasoning about a generic representative of the natural numbers, s, I conclude for

all s 2 N, P (s) follows from 8k 2 N; k < n) P (k).

So, by the principle of complete induction, 8s 2 N; P (s).
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