QuESTION 1. [8 MARKs]

Prove that for all natural numbers n greater than 1 , the set of the first n positive integers $\{1, \ldots, n\}$ has $3 \cdot 2^{n-2}$ subsets that omit either the element 1 , or the element 2 , or both the elements 1 and 2 .

SAMPLE SOLUTion: Let $P(n)$ be "There are $3 \cdot 2^{n-2}$ subsets of the set of the first n positive integers $\{1, \ldots, n\}$ that omit either the element 1 , or the element 2 , or both the elements 1 and $2 . "$
Proof that for all natural numbers greater than $1, P(n)$:
BASE CASE: If $n=2$, the subsets of $\{1,2\}$ that omit either the element 1 , or the element 2 , or both the elements 1 and 2 are $\left\},\{1\}\right.$ and $\{2\}$, that is $3=3 \cdot 2^{2-2}$ such subsets, so $P(2)$ is true.
Induction Step: Assume that n is a generic natural number greater than 1 , and that $P(n)$ is true. Count the subsets of the set of the first $n+1$ positive integers that omit either 1 , or omit 2 , or omit both 1 and 2 by partitioning the subsets into those that include the element $n+1$, and those that don't (notice that $n+1>2$, so this element is neither 1 nor 2). The relevant subsets that don't include the element $n+1$ are identical to the relevant subsets of the set $\{1, \ldots, n\}$, and by the IH there are $3 \cdot 2^{n-2}$ of those. The relevant subsets that do include the element $n+1$ are formed by adjoining element $n+1$ to each of the relevant subsets that don't include $n+1$, so there are also $3 \cdot 2^{n-2}$ of these. So, in sum, there are $2 \cdot 3 \cdot 2^{n-2}=3 \cdot 2^{n-1}$ subsets that omit element 1 , or omit element 2, or omit both elements 1 and 2 , as claimed by $P(n+1)$. So, for every natural number n greater than $1, P(n)$ implies $P(n+1)$.
I conclude that for every natural number n greater than $1, P(n)$ is true.

QuESTION 2. [8 MARKs]

Recall the Fibonacci sequence:

$$
\forall n \in \mathbb{N} \quad F(n)= \begin{cases}n, & \text { if } n<2 \\ F(n-2)+F(n-1), & \text { if } n \geq 2\end{cases}
$$

Prove that for all natural numbers $n, F(n)<2^{n}$.
Sample solution: Define $P(n) " F(n)<2^{n}$."
Proof (Complete induction) that $\forall n \in \mathbb{N}, P(n)$: Assume that n is an arbitrary natural number, and that $P(0) \wedge \cdots \wedge P(n-1)$ are true. If $n=0, F(0)=0<1=2^{0}$, so $P(0)$ is true. If $n=1$, $F(1)=1<2=2^{1}$, so $P(1)$ is true. Otherwise, $n>1$ so by the definition of $F(n)$ we have

$$
\begin{aligned}
F(n) & =F(n-2)+F(n-1) \quad(\text { definition of } F(n) \text { for } n>1) \\
& <2^{n-2}+2^{n-1} \quad(\text { By } P(n-2) \text { and } P(n-1), \text { since } 0 \leq n-2, n-1 \leq n \text { when } n>1) \\
& <2 \times 2^{n-1} \quad\left(\text { since } 2^{n-2}<2^{n-1}\right) \\
& =2^{n}
\end{aligned}
$$

So $F(n)<2^{n}$, and this is exactly what $P(n)$ says, so $\forall n \in \mathbb{N}, P(0) \wedge \cdots P(n-1) \Rightarrow P(n)$. I conclude that for every natural number $n, P(n)$.
\qquad

Question 3. [8 marks]

Find some natural number k such that for all natural numbers n greater than $k, 3^{n}>3 n^{3}$. Prove your claim. You may use the binomial expansion, $(n+1)^{3}=n^{3}+3 n^{2}+3 n+1$.

Sample solution: Define $P(n)$ as " $3 n>3 n^{3}$ ".
Proof (Simple induction) that for all natural numbers greater than $5, P(n)$:
BASE CASE: If $n=6$ then $3^{6}=729>648=3 \times 6^{3}$, so $P(6)$ is true.
Induction step: Assume that n is a generic integer greater than 6 , and that $P(n)$ is true. Then

$$
\begin{aligned}
3^{n+1} & =3 \times 3^{n}>3 \times 3 n^{3} \quad(\text { by } P(n)) \\
& =3 n^{3}+3 n^{3}+n^{3}+2 n^{3} \quad \quad \quad \text { (expanding...) } \\
& \geq 3 n^{3}+9 n^{2}+9 n+3 \quad\left(\text { Since } 3 n^{3} \geq 9 n^{2}, n^{3} \geq 9 n, \text { and } 2 n^{3} \geq 3 \text { when } n>5 \geq 3\right) \\
& =3(n+1)^{3}
\end{aligned}
$$

So $3^{n+1}>3(n+1)^{3}$, which is what $P(n+1)$ says, so for every natural number n greater than 5 , $P(n) \Rightarrow P(n+1)$.
In conclude that for all natural numbers n greater than $5, P(n)$.
\qquad

Total Marks $=24$

