CSC236 tutorial exercises #5

(Best before 11 am, Monday October 29th)

Danny Heap

Here are your tutorial sections:

Surname	Section	Room	TA
A-F	Day 1 (11:00 am)	LM162	Yuval
G-Li	Day 2 (11:00 am)	BA2139	Lila
Lo-Si	Day 3 (11:00 am)	BA2145	Oles
So-Z	Day 4 (11:00 am)	BA2155	Lalla
A–H	Evening 1 (8:00 pm)	BA1190	Colin
I-M	Evening 2 (8:00 pm)	BA2135	Norman
N–Z	Evening 3 (8:00 pm)	BA2139	Feyyaz

These exercises are meant to give you practice applying the Master Theorem to divide-and-conquer algorithms.

- 1. A non-empty array A with integer entries has the property that no odd number occurs at a lower index than an even number. Devise a divide-and-conquer algorithm for finding the highest index of an even number element, or -1 if A has no elements that are even numbers. Use the Master Theorem to bound the asymptotic time complexity of your algorithm.
- 2. Consider this informal algorithm for QuickSort of a non-empty array A of distinct integers
 - (a) Choose a pivot, p from A in constant time
 - (b) Partition A into A_p- consisting of elements less than p, [p] itself, and A_p+ consisting of elements greater than p. Recursively QuickSort A_p- and A_p+
 - (c) Concatenate the sorted version of A_{p^-} , [p], and the sorted version of A_{p^+}

Write a recurrence T, for the time complexity of QuickSorting A. Assume the worst (that the constant-time choice of a pivot is consistently unlucky), and use repeated substitution to find a closed form for T. Assume the best (that the constant-time choice of a pivot is consistently lucky) and use the Master Theorem to bound T.