
CSC236 tutorial exercises #5

(sample solution)

Danny Heap

1. A non-empty array A with integer entries has the property that no odd number occurs at a lower index

than an even number. Devise a divide-and-conquer algorithm for �nding the highest index of an even

number element, or -1 if A has no elements that are even numbers. Use the Master Theorem to bound

the asymptotic time complexity of your algorithm.

Solution: The even number element with the highest index will either be followed by an odd number,

or will be the last element of the array, or there are no even numbers in the array.

assume A is indexed from 0

recHighestEven(A, b, e) # b and e are begin and end indices

if b == e :

if A[b] % 2 == 0 : return b

else : return b-1

else :

m = (b + e) // 2 # midpoint

if A[m+1] % 2 == 1 :

recHighestEven(A, b, m)

else :

recHighestEven(A, m+1, e)

A recursive call on (approximately) half the array, with a constant amount of work to split and

recombine the array, so the complexity can be expressed by the recurrence, if n = jAj:

T (n) =

(
1 if n = 1

1 +maxfT (dn=2e) + T (bn=2c)g if n > 1

In terms of the Master Theorem we have a = 1, b = 2, and d = 0, so the complexity is �(logn).

2. Consider this informal algorithm for QuickSort of a non-empty array A of distinct integers

(a) Choose a pivot, p from A in constant time

(b) Partition A into Ap� consisting of elements less than p, [p] itself, and Ap+ consisting of elements

greater than p. Recursively QuickSort Ap� and Ap+

(c) Concatenate the sorted version of Ap� , [p], and the sorted version of Ap+

Write a recurrence T , for the time complexity of QuickSorting A. Assume the worst (that the constant-

time choice of a pivot is consistently unlucky), and use repeated substitution to �nd a closed form for

T . Assume the best (that the constant-time choice of a pivot is consistently lucky) and use the Master

Theorem to bound T .

1

Solution: Without more information, we don't really know the size of the partition with elements

smaller than the pivot, or the partition with elements greater than the pivot. In any case, it takes

proportional to the jAj = n to partition A, so

T (n) =

(
1 if n = 1

T (jA� j) + T (jA+ j) + cn

Assuming the worst would mean that the pivot is always chosen to be the largest (or smallest)

element, so we only decrease the problem by 1 each recursive call:

T (n) = T (n� 1) + cn

= T (n� 2) + c(n� 1) + cn

...

= T (1) + 2c+ � � �+ c(n� 1) + cn

= cn(n� 1)=2 + 1� c

So the worst case is �(n2). Assuming the best would mean that the pivot is always chosen to split

A is close to half as possible each recursive call, so

T (n) =

(
1 if n = 1

T (dn=2e) + T (bn=2c) + cn if n > 1

This �ts the conditions of the Master Theorem with a = 2, b = 2, and d = 1, yielding complexity

class n logn. In practice, choosing the pivot randomly yields this result, on average.

2

