CSC236 tutorial exercises \#4

(Best before 11 am, Monday October 22nd)

Danny Heap

Here are your tutorial sections:

Surname	Section	Room	TA
A-F	Day 1 $(11: 00 \mathrm{am})$	LM162	Yuval
G-Li	Day 2 $(11: 00 \mathrm{am})$	BA2139	Lila
Lo-Si	Day 3 $(11: 00 \mathrm{am})$	BA2145	Oles
So-Z	Day 4 $(11: 00 \mathrm{am})$	BA2155	Lalla
A-H	Evening 1 $(8: 00 \mathrm{pm})$	BA1190	Colin
$\mathrm{I}-\mathrm{M}$	Evening 2 $(8: 00 \mathrm{pm})$	BA2135	Norman
N-Z	Evening 3 $(8: 00 \mathrm{pm})$	BA2139	Feyyaz

These exercises are meant to give you practice with some of the concepts used to prove the Master Theorem.

1. Consider the recurrence:

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+n+1 & \text { if } n>1\end{cases}
$$

This recurrence is superficially different from the one derived in the Course notes. Use the above recurrence and the approach of Lemma 3.7 in the Course Notes to show that T is non-decreasing.
Claim: Define $P(n)$: for every positive integer $m, m<n \Rightarrow T(m) \leq T(n)$. I use complete induction to prove that $\forall n \in \mathbb{N}^{+}, P(n)$.
Induction step: Assume that n is an arbitrary positive integer, and that $P(k)$ is true for $1 \leq k<n$.
Case $1 \leq n<3: P(1)$ is vacuously true, since there are no positive integers less than 1 . To establish $P(2)$ I calculate $T(1)=1$ and $T(2)=2 T(1)+2+1=5$, and note that $1 \leq 5$, so $P(1)$ and $P(2)$ are each verified.
Case $n>2$: Then $1 \leq\lfloor n / 2\rfloor \leq\lceil n / 2\rceil<n$, by Lemma 3.8. Also $1 \leq n-1<n$, so $P(n-1)$ is true, by assumption, and the only thing left is to show $T(n-1) \leq T(n)$, and

$$
\begin{aligned}
T(n-1)= & T(\lceil(n-1) / 2\rceil)+T(\lfloor(n-1) / 2\rfloor)+(n-1)+1 \quad \text { \# apply definition } \\
\leq & T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+n+1 \quad \text { \# by } P(\lfloor n / 2\rfloor), P(\lceil n / 2\rceil) \\
& \quad \text { \# also } n-1 \leq n \text { and } 1 \leq\lfloor(n-1) / 2\rfloor \leq\lfloor n / 2\rfloor \\
& =T(n)
\end{aligned}
$$

Conclude $\forall n \in \mathbb{N}^{+}, P(n)$ by complete induction.
2. Use repeated substitution (unwinding) to find a closed form for the recurrence S when n is a power of 3:

$$
S(n)= \begin{cases}1 & \text { if } n<3 \\ a_{1} S(\lceil n / 3\rceil)+a_{2} S(\lfloor n / 3\rfloor)+n^{2} & \text { if } n>2\end{cases}
$$

\ldots where integers $a_{1}, a_{2} \geq 0$ and $a_{1}+a_{2}=3$.
Solution: If n is an integer power of 3 greater than 3^{0}, then $\lfloor n / 3\rfloor$ is the same as $\lceil n / 3\rceil$, and the recurrence can be simplified to:

$$
S(n)=3 S(n / 3)+n^{2}
$$

Unwind this a few steps to see a pattern:

$$
\begin{aligned}
S(n) & =3 S(n / 3)+n^{2} \\
& =3\left(3 S(n / 9)+(n / 3)^{2}\right)+n^{2} \\
& =3^{2} S(n / 9)+n^{2} / 3+n^{2} \\
& =3^{2}\left(3 S(n / 27)+(n / 9)^{2}\right)+n^{2} / 3+n^{2} \\
& =3^{3} S(n / 27)+n^{2} / 9+n^{2} / 3+n^{2} \\
& \vdots \\
& =3^{k} S(n / n)+n^{2} \sum_{i=0}^{k-1} 1 / 3^{i} \quad \# k=\log _{3} n \\
& =n+n^{2} \frac{1-(1 / 3)^{k}}{1-1 / 3} \quad \# \text { formula for geometric series } \\
& =n+n^{2} \frac{\left(3^{k}-1\right) / 3^{k}}{2 / 3}=n+\frac{3}{2} \frac{n^{2}(n-1)}{n} \quad \# n=3^{k} \\
& =n+\frac{3}{2} n(n-1)
\end{aligned}
$$

Claim: $\forall k \in \mathbb{N}, S\left(3^{k}\right)=3^{k}+\frac{3}{2} 3^{k}\left(3^{k}-1\right)$. For convenience, define $P(k): S\left(3^{k}\right)=3^{k}+\frac{3}{2} 3^{k}\left(3^{k}-1\right)$. Proof (by mathematical induction):
Base case $k=0$: By definition $S\left(3^{0}\right)=1$, and that's also equal to $3^{0}+\frac{3}{2} 3^{0}\left(3^{0}-1\right)$, as claimed. So the $P(0)$ is true.
Induction step: Assume that k is an arbitrary natural number and assume that $P(k)$ is true. Then

$$
\begin{aligned}
S\left(3^{k+1}\right) & =3 S\left(3^{k}\right)+\left(3^{k+1}\right)^{2} \quad \text { \# apply definition for } 3^{k+1}>2 \\
& =3\left(3^{k}+\frac{3}{2} 3^{k}\left(3^{k}-1\right)\right)+\left(3^{k+1}\right)^{2} \quad \text { \# apply IH to } S\left(3^{k}\right) \\
& =3^{k+1}+\frac{3}{2} 3^{k+1}\left(3^{k}-1\right)+\left(3^{k+1}\right)^{2} \\
& =3^{k+1}+3^{k+1} \frac{3^{k+1}-3+2 \times 3^{k+1}}{2} \quad \text { \# factor out } 3^{k+1} \\
& =3^{k+1}+\frac{3}{2} 3^{k+1}\left(3^{k+1}-1\right)
\end{aligned}
$$

\ldots. So $S\left(3^{k+1}\right)=3^{k+1}+\frac{3}{2} 3^{k+1}\left(3^{k+1}-1\right)$.
So, $\forall k \in \mathbb{N}, P(k) \Rightarrow P(k+1)$.
Conclude, $\forall k \in \mathbb{N}, P(k)$, by mathematical induction.

