CSC236 tutorial exercises

(Best before 11 am, Monday October 15th)

Danny Heap

Here are your tutorial sections:

Surname	Section	Room	TA
A-F	Day 1 (11:00 am)	LM162	Yuval
G–Li	Day 2 (11:00 am)	BA2139	Lila
Lo-Si	Day 3 (11:00 am)	BA2145	Oles
So-Z	Day 4 (11:00 am)	BA2155	Lalla
A-H	Evening 1 (8:00 pm)	BA1190	Colin
I-M	Evening 2 (8:00 pm)	BA2135	Norman
N–Z	Evening 3 (8:00 pm)	BA2139	Feyyaz

These exercises are intended to give you practice with unwinding and proving recurrences.

1. Consider the recurrence:

$$T(n) = egin{cases} 1 & ext{if } n = 1 \ 1 + T(\lceil n/2 \rceil) & ext{if } n > 1 \end{cases}$$

Use complete induction to prove that for every positive natural number $n, T(n) \ge c \lg(n)$, for some positive real constant c.

- 2. Unwind the recurrence from the previous question in the case where $n = 2^k$ for some positive integer k (see annotated slides from October 11th or 12th). Use mathematical induction on k to prove that $T(2^k) = k + 1$.
- 3. Consider another recurrence:

$$G(n) = egin{cases} 1 & ext{if } n < 2 \ 1 + G(n-1) + G(n-2) & ext{if } n \geq 2 \end{cases}$$

Unwind the recurrence carefully, following the pattern below, for some n that is comfortably greater than 1:

$$G(n) = 1 + G(n-1) + G(n-2)$$

= 1 + (1 + G(n-2) + G(n-3)) + G(n-2) = 2 + 2G(n-2) + G(n-3)
= 2 + 2(1 + G(n-3) + G(n-4)) + G(n-3) = 4 + 3G(n-3) + 2G(n-4)
= 4 + 3(1 + G(n-4) + G(n-5)) + 2G(n-4) = 7 + 5G(n-4) + 3G(n-5)
:

Can you see a pattern that leads to a guess at a closed form for G(n)?

Solutions

- 1. $P(n): T(n) \ge c \log(n)$ (for some positive constant c that we determine below).
 - Induction step: Assume n is a generic positive natural number, and that P(i) for every natural number $i, 1 \le i < n$.

Case n = 1 (base case): If n = 1, then $T(n) = 1 \ge c0$ for any real number c, so P(1) is verified without recourse to induction.

Case n > 1: Then, by definition $T(n) = 1 + T(\lceil n/2 \rceil)$, so

 $\begin{array}{lll} T(n) &=& 1+T(\lceil n/2\rceil)\\ &\geq& 1+c\lg(\lceil n/2\rceil) & \text{by IH, since } 1\leq \lceil n/2\rceil < n, n > 1.\\ &\geq& 1+c\lg(n/2) & \text{since } \lg \text{ is increasing}\\ &=& 1+c(\lg(n)-\lg(2))=c\lg(n)+1-c\\ &\geq& 2c\lg(n) & \text{provided } 1\geq c. \end{array}$

So $T(n) \ge c \lg(n)$ holds in both possible cases.

So, for every positive integer n, if P(i) is true for $1 \le i < n$, then so is P(n).

Conclude P(n) for all positive natural numbers, by Complete Induction.

The inequality $1 \leq \lfloor n/2 \rfloor < n$ for n > 1 is proved in the Course Notes.

2. $P(k): T(2^k) = 1 + k$. Proof of that $\forall k \in \mathbb{N}, P(k)$ by Mathematical Induction.

Base case (k = 0): Then $T(2^k) = T(1) = 1 = 1 + k$, so the claim is verified for k = 0.

Induction step: Assume that k is a generic natural number and that P(k) holds, that is $T(2^k) = 1 + k$. Then

$$T(2^{k+1}) = 1 + T(\lceil 2^k \rceil) \quad \text{definition, since } 2^{k+1} > 1$$

= 1 + T(2^k) $\lceil 2^k \rceil = 2^k$
= 1 + 1 + k by IH
= 1 + (k + 1)

That is, P(k+1).

So, $\forall n \in \mathbb{N}, P(k) \Rightarrow P(k+1)$

Conclude, $\forall k, P(k)$, by Mathematical Induction.

3. Unwinding farther, and noticing some similarity to the Fibonacci numbers F(i):