CSC236 tutorial exercises \#

(Best before 11 am, Monday October 15th)

Danny Heap

Here are your tutorial sections:

Surname	Section	Room	TA
A-F	Day 1 $(11: 00 \mathrm{am})$	LM162	Yuval
G-Li	Day 2 $(11: 00 \mathrm{am})$	BA2139	Lila
Lo-Si	Day 3 $(11: 00 \mathrm{am})$	BA2145	Oles
So-Z	Day 4 $(11: 00 \mathrm{am})$	BA2155	Lalla
A-H	Evening 1 $(8: 00 \mathrm{pm})$	BA1190	Colin
I-M	Evening 2 $(8: 00 \mathrm{pm})$	BA2135	Norman
N-Z	Evening 3 $(8: 00 \mathrm{pm})$	BA2139	Feyyaz

These exercises are intended to give you practice with unwinding and proving recurrences.

1. Consider the recurrence:

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ 1+T(\lceil n / 2\rceil) & \text { if } n>1\end{cases}
$$

Use complete induction to prove that for every positive natural number $n, T(n) \geq c \lg (n)$, for some positive real constant c.
2. Unwind the recurrence from the previous question in the case where $n=2^{k}$ for some positive integer k (see annotated slides from October 11th or 12th). Use mathematical induction on k to prove that $T\left(2^{k}\right)=k+1$.
3. Consider another recurrence:

$$
G(n)= \begin{cases}1 & \text { if } n<2 \\ 1+G(n-1)+G(n-2) & \text { if } n \geq 2\end{cases}
$$

Unwind the recurrence carefully, following the pattern below, for some n that is comfortably greater than 1:

$$
\begin{aligned}
G(n) & =1+G(n-1)+G(n-2) \\
& =1+(1+G(n-2)+G(n-3))+G(n-2)=2+2 G(n-2)+G(n-3) \\
& =2+2(1+G(n-3)+G(n-4))+G(n-3)=4+3 G(n-3)+2 G(n-4) \\
& =4+3(1+G(n-4)+G(n-5))+2 G(n-4)=7+5 G(n-4)+3 G(n-5) \\
& \vdots
\end{aligned}
$$

Can you see a pattern that leads to a guess at a closed form for $G(n)$?

Solutions

1. $P(n): T(n) \geq c \log (n)$ (for some positive constant c that we determine below).

Induction step: Assume n is a generic positive natural number, and that $P(i)$ for every natural number $i, 1 \leq i<n$.

Case $n=1$ (base case): If $n=1$, then $T(n)=1 \geq c 0$ for any real number c, so $P(1)$ is verified without recourse to induction.
Case $n>1$: Then, by definition $T(n)=1+T(\lceil n / 2\rceil)$, so

$$
\begin{aligned}
T(n) & =1+T(\lceil n / 2\rceil) \\
& \geq 1+c \lg (\lceil n / 2\rceil) \quad \text { by } \mathrm{IH}, \text { since } 1 \leq\lceil n / 2\rceil<n, n>1 \\
& \geq 1+c \lg (n / 2) \quad \text { since } \lg \text { is increasing } \\
& =1+c(\lg (n)-\lg (2))=c \lg (n)+1-c \\
& \geq \geq c \lg (n) \quad \text { provided } 1 \geq c .
\end{aligned}
$$

So $T(n) \geq c \lg (n)$ holds in both possible cases.
So, for every positive integer n, if $P(i)$ is true for $1 \leq i<n$, then so is $P(n)$.
Conclude $P(n)$ for all positive natural numbers, by Complete Induction.
The inequality $1 \leq\lceil n / 2\rceil<n$ for $n>1$ is proved in the Course Notes.
2. $P(k): T\left(2^{k}\right)=1+k$. Proof of that $\forall k \in \mathbb{N}, P(k)$ by Mathematical Induction.

Base case $(k=0)$: Then $T\left(2^{k}\right)=T(1)=1=1+k$, so the claim is verified for $k=0$.
Induction step: Assume that k is a generic natural number and that $P(k)$ holds, that is $T\left(2^{k}\right)=1+k$.
Then

$$
\begin{array}{rlrl}
T\left(2^{k+1}\right) & =1+T\left(\left\lceil 2^{k}\right\rceil\right) \quad \text { definition, since } 2^{k+1}>1 \\
& =1+T\left(2^{k}\right) \quad\left\lceil 2^{k}\right\rceil=2^{k} \\
& =1+1+k \quad \text { by IH } \\
& =1+(k+1) &
\end{array}
$$

That is, $P(k+1)$.
So, $\forall n \in \mathbb{N}, P(k) \Rightarrow P(k+1)$
Conclude, $\forall k, P(k)$, by Mathematical Induction.
3. Unwinding farther, and noticing some similarity to the Fibonacci numbers $F(i)$:

$$
\begin{aligned}
G(n) & =1+G(n-1)+G(n-2) \\
& =1+(1+G(n-2)+G(n-3))+G(n-2)=2+2 G(n-2)+G(n-3) \\
& =2+2(1+G(n-3)+G(n-4))+G(n-3)=4+3 G(n-3)+2 G(n-4) \\
& =4+3(1+G(n-4)+G(n-5))+2 G(n-4)=7+5 G(n-4)+3 G(n-5) \\
& =7+5(1+G(n-6)+G(n-5))+3 G(n-5)=12+8 G(n-5)+5 G(n-6) \\
& \vdots \\
& =[F(i+1)-1]+F(i) G(n-i+1)+F(i-1) G(n-i) \\
& \vdots \\
& =[F(n+1)-1]+F(n) G(1)+F(n-1) G(n-n)=2 F(n+1)-1
\end{aligned}
$$

