
CSC236 fall 2012
recursion, induction, correctness

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/236/F12/

416-978-5899

Using Introduction to the Theory of Computation,

Chapter 2

http://www.cdf.toronto.edu/~heap/236/F12/
http://www.cs.toronto.edu/~vassos/b36-notes/
http://www.cs.toronto.edu/~vassos/b36-notes/

Outline

binary search

recursive binary search

def recBinSearch(x, A, b, e) :

if b == e :

if x <= A[b] :

return b

else :

return e + 1

else :

m = (b + e) // 2 # midpoint

if x <= A[m] :

return recBinSearch(x, A, b, m)

else :

return recBinSearch(x, A, m+1, e)

conditions, pre- and post-

I x and elements of A are comparable

I e and b are valid indices, b � e

I A[b::e] is sorted non-decreasing

RecBinSearch(x ;A; b; e) terminates and returns index p

I b � p � e + 1

I b < p) A[p � 1] < x

I p � e) x � A[p]

(except for boundaries, returns p so that A[p � 1] < x � A[p])

precondition) termination and postcondition
Proof: induction on n = e � b + 1

Base case, n = 1: Terminates because there are no loops or

further calls, returns x � A[b = p], p = b = e is returned.

x > A[b = p � 1], p = b + 1 returned, so postcondition

satis�ed. Notice that the choice forces if-and-only-if.

Induction step: Assume n > 1 and that the postcondition is

satis�ed for inputs of size 1 � k < n that satisfy the

precondition. Call RecBinSearch(A,x,b,e) when

n = e � b + 1 > 1. Since b < e in this case, the test on line 1

fails, and line 7 executes. Exercise: b � m < e in this case.

There are two cases, according to whether x � A[m] or

x > A[m].

Case 1: x � A[m]

I Show that IH applies to RBS(x,A,b,m)

I Translate the postcondition to RBS(x,A,b,m)

I Show that RBS(x,A,b,e) satis�es postcondition

Case 2: x > A[m]

I Show that IH applies to RBS(x,A,m+1,e)

I Translate postcondition to RBS(x,A,m+1,e)

I Show that RBS(x,A,b,e)

what could go wrong?

I m = d e+b

2:0
e

I x < A[m]

I . . .

I Either prove correct, or �nd a counter-example

recursive and iterative
mergesort

MergeSort(A,b,e):

1. if b == e: return

2. m = (b + e) / 2 # integer division

3. MergeSort(A,b,m)

4. MergeSort(A,m+1,e)

merge sorted A[b..m] and A[m+1..e] back into A[b..e]

5. for i = b,...,e: B[i] = A[i]

6. c = b

7. d = m+1

8. for i = b,...,e:

9. if d > e or (c <= m and B[c] < B[d]):

10. A[i] = B[c]

11. c = c + 1

else: # d <= e and (c > m or B[c] >= B[d])

12. A[i] = B[d]

13. d = d + 1

conditions, pre- and post-

I b and e are nature numbers, 0 � b � e < len(A).

I elements of A are comparable

I A0[b::e] contains the same elements as A[b::e], but sorted

in non-decreasing order (use notation A0 for A after calling

MergeSort(A,b,e)). All other elements of A0 are unchanged.

Proof of correctness of MergeSort(A,b,e)
by induction on n = e � b + 1 for all arrays of size n ,

(precondition+execution))(termination+postcondition)

Base case, 1 = e � b + 1: Assume MergeSort(A,b,e) is called

with len(A) = 1 preconditions satis�ed. Then 0 � e � b � 0,

so e == b, and the algorithm terminates with a (trivially)

sorted A0, satisfying the precondition.

Induction step: Assume n 2 N, n > 1, and for all natural

numbers k , 1 � k < n , that MergeSort on all arrays of size k

that satisfy the precondition and run will terminate and satisfy

the postcondition. Assume MergSort(A,b,e) is executed and

n = e � b + 1.

The test on line 1 fails, and m is set to (b + e)==2, strictly less

than e (exercise).

Does the IH apply to MergeSort(A,b,m) and

MergeSort(A,m+1,e)? Translate the IH into postconditions for

MergeSort(A,b,m) and MergeSort(A,m+1,e).

Now we need iterative correctness for the merge. . .

iterative correctness
partial correctness plus termination

I Preconditions plus termination imply the postcondition.

Probably needs a loop invariant

I termination | construct a decreasing sequence in N.

	binary search

