MT - Monday, in tutorial, 3 questions \rightarrow ch 3 (recurrences, bounds, CSC236 fall 2012
 recursion, induction, correctness

Danny Heap
heap@cs.toronto.edu BA 4270 (behind elevators) http://www.cdf.toronto.edu/~heap/236/F12/ 416-978-5899

Using Introduction to the Theory of Computation,
Chapter 2

Outline

binary search

UNIVERSITY OF TORONTO
\square

recursive binary search

```
def recBinSearch(x, A, b, e) :
    if b == e :
    if x <= A[b] :
        return b
    else :
        return e + 1
    else :
```

 \(m=(b+e) / / 2\) \# midpoint
 if x <= A[m] :
 return recBinSearch (x, A, b, m)
 else :
 return recBinSearch(x, A, m+1, e)

conditions, pre- and post-

- x and elements of A are comparable
- e and b are valid indices, $b \leq e$
- $A[b . . e]$ is sorted non-decreasing

RecBinSearch (x, A, b, e) terminates and returns index p

- $b \leq p \leq e+1$
- $b<p \Rightarrow A[p-1]<x$
- $p \leq e \Rightarrow x \leq A[p]$
(except for boundaries, returns p so that $A[p-1]<x \leq A[p]$)

precondition \Rightarrow termination and postcondition

Proof: induction on $n=e-b+1$

Base case, $n=1$: Terminates because there are no loops or further calls, returns $x \leq A[b=p] \Leftrightarrow p=b=e$ is returned. $x>A[b=p-1] \Leftrightarrow p=b+1$ returned, so postcondition satisfied. Notice that the choice forces if-and-only-if.

Induction step: Assume $n>1$ and that the postcondition is satisfied for inputs of size $1 \leq k<n$ that satisfy the precondition. Call RecBinSearch($\mathrm{A}, \mathrm{x}, \mathrm{b}, \mathrm{e}$) when $n=e-b+1>1$. Since $b<e$ in this case, the test on line 1 fails, and line 7 executes. Exercise: $b \leq m<e$ in this case. There are two cases, according to whether $x \leq A[m]$ or $x>A[m]$.

Case 1: $x \leq A[m]$

- Show that IH applies to RBS(x,A,b,m)
- Translate the postcondition to RBS(x,A,b,m)
- Show that RBS(x,A,b,e) satisfies postcondition

Case 2: $x>A[m]$

- Show that IH applies to RBS(x,A,m+1,e)
- Translate postcondition to $\operatorname{RBS}(\mathrm{x}, \mathrm{A}, \mathrm{m}+1, \mathrm{e})$
- Show that RBS(x, $A, b, e)$
what could go wrong?

$$
b \in m<e
$$

$$
b=0, e=3
$$

- $\left.m=\left\lceil\frac{e+b}{2.0}\right\rceil\right] \xrightarrow{\text {-Step out } d} m=2$
- $x<A[m]$
- Either prove correct, or find a counterexample

conditions, pre- and post-

pres

- b and e are nature numbers, $0 \leq b \leq e<\operatorname{len}(A)$.
- elements of A are comparable terminates with
- $A^{\prime}[b . . e]$ contains the same elements as $A[b . . e]$, but sorted in non-decreasing order (use notation A^{\prime} for A after calling MergeSort(A, $\mathrm{b}, \mathrm{e})$). All other elements of A^{\prime} are unchanged.
$A^{\prime}[b . . m]$ from A.
$A^{\prime \prime}[m+1 \ldots e]$ contains ells except sol th as $A^{\prime}[m+1 \ldots \ldots]$
efts changrecept sorted. (t no other

Proof of correctness of MergeSort(A,b,e)

by induction on $n=e-b+1$ for all arrays of size n, (precondition + execution) \Rightarrow (termination + postcondition)

$$
\left.A^{\prime} E b, e\right]=A[b, e]
$$

Base case, $1=e-b+1$: Assume MergeSort $(\mathrm{A}, \mathrm{b}, \mathrm{e})$ is called with $\operatorname{len}(A)=1$ preconditions satisfied. Then $0 \leq e \leq b \leq 0$, so $e==b$, and the algorithm terminates with a (trivially) sorted A^{\prime}, satisfying the recondition. - single elemeid.
element is in onder. post

Induction step: Assume $n \in \mathbb{N}, n>1$, and for all natural numbers $k, 1 \leq k<n$, that MergeSort on all arrays of size k that satisfy the precondition and run will terminate and satisfy the postcondition. Assume MergSort(A, b,e) is executed and $n=e-b+1$.

$$
\begin{aligned}
e-b+1 & >1 \\
\Rightarrow & e-b \\
e & >b
\end{aligned}
$$

The test on line 1 fails, and m is set to $(b+e) / / 2$, strictly less than e (exercise).

Does the IH apply to MergeSort(A,b,m) and MergeSort(A,m+1,e)? Translate the IH into postconditions for MergeSort(A,b,m) and MergeSort(A,m+1,e).

Now we need iterative correctness for the merge...
iterative correctness

$$
A[\ldots \underbrace{b \ldots m}_{\text {sorted }} \underbrace{m+1 \ldots e}_{\text {sorter }} \ldots] \quad\left[\begin{array}{l}
\text { pro } \Rightarrow \text { post } \\
\frac{\text { provided }}{\text { termination }}
\end{array}\right.
$$

partial correctness plus termination

$$
A\left[\ldots b \ldots \text { sorted - } \left[\begin{array}{l}
\text { partial } \\
\text { correctness }
\end{array}\right.\right.
$$

- Preconditions plus termination imply the postcondition.
/ Probably needs a loop invariant separately
devise a loop "invariant" prove termination
termination - construct a decreasing sequence in \mathbb{N}. quantity that dercrebes/specifiss. $n_{i}, n_{i+1}, \ldots, n_{k}=0$ (an termination

