CSC236 fall 2012
 more complexity: mergesort

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/236/F12/
416-978-5899

Using Introduction to the Theory of Computation, Chapter 3

Outline

divide and conquer (recombine)

using the Master Theorem

Notes

General case

Class of algorithms: partition problem into b roughly equal subproblems, solve, and recombine:

$$
T(n)= \begin{cases}k & \text { if } n \leq B \\ a_{1} T(\lceil n / b\rceil)+a_{2} T(\lfloor n / b\rfloor)+f(n) & \text { if } n>B\end{cases}
$$

where $B, k>0, a_{1}, a_{2} \geq 0$, and $a_{1}+a_{2}>0 . f(n)$ is the cost of splitting and recombining.

Master Theorem

(for divide-and-conquer recurrences)

If f from the previous slide has $f \in \theta\left(n^{d}\right)$, then

$$
T(n)= \begin{cases}\theta\left(n^{d}\right) & \text { if } a<b^{d} \\ \theta\left(n^{d} \log n\right) & \text { if } a=b^{d} \\ \theta\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}
$$

Proof sketch

1. Unwind the recurrence, and prove a result for $n=b^{k}$
2. Prove that T is non-decreasing
3. Extend to all n, similar to MergeSort

multiply lots of bits

what if they don＇t fit into a machine instruction？

$$
\begin{array}{r}
1101 \\
\times 1011
\end{array}
$$

• ミ 引 つQく

divide and recombine

recursively...

$$
x y=2^{n} x_{1} y_{1}+2^{n / 2}\left(x_{1} y_{0}+y_{1} x_{0}\right)+x_{0} y_{0}
$$

compare costs

$n n$-bit additions versus:

1. divide each factor (roughly) in half
2. multiply the halves (recursively, if they're too big)
3. combine the products with shifts and adds

Gauss's trick

$$
x y=2^{n} x_{1} y_{1}+x_{0} y_{0}+2^{n / 2}\left(\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)-x_{1} y_{1}-x_{0} y_{0}\right)
$$

Gauss's payoff

lose one multiplication

1. divide each factor (roughly) in half
2. sum the halves
3. multiply the sum and the halves Gauss-wise
4. combine the products with shifts and adds

closest point pairs

see Wikipedia

[^0]
divide-and-conquer v0.1

UNIVERSITY OF TORONTO

how many close points fit?

UNIVERSITY OF TORONTO

an $n \lg n$ algorithm

P is a set of points

1. Construct (sort) P_{x} and P_{y}
2. For each recursive call, construct $L_{x}, L_{y}, R_{x}, R_{y}$
3. Recursively find closest pairs $\left(l_{0}, l_{1}\right)$ and $\left(r_{0}, r_{1}\right)$, with minimum distance δ
4. V is the vertical line splitting L and R, D is the δ-neighbourhood of V, and D_{y} is D ordered by y-ordinate
5. Traverse D_{y} looking for mininum pairs 15 places apart
6. Choose the minimum pair from D_{y} versus $\left(l_{0}, l_{1}\right)$ and $\left(r_{0}, r_{1}\right)$.

Notes

UNIVERSITY OF TORONTO
\square

[^0]:

