
CSC236 fall 2012

more complexity: mergesort

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/236/F12/

416-978-5899

Using Introduction to the Theory of Computation,

Chapter 3



Outline

divide and conquer (recombine)

using the Master Theorem

Notes



General case
revisit. . .

Class of algorithms: partition problem into b roughly equal

subproblems, solve, and recombine:

T (n) =

8<
:
k if n � B

a1T (dn=be) + a2T (bn=bc) + f (n) if n > B

where B ; k > 0, a1; a2 � 0, and a1 + a2 > 0. f (n) is the cost of

splitting and recombining.



Master Theorem
(for divide-and-conquer recurrences)

If f from the previous slide has f 2 �(nd), then

T (n) =

8>><
>>:

�(nd) if a < bd

�(nd logn) if a = bd

�(n logb a) if a > bd



Proof sketch

1. Unwind the recurrence, and prove a result for n = bk

2. Prove that T is non-decreasing

3. Extend to all n , similar to MergeSort



multiply lots of bits
what if they don't �t into a machine instruction?

1101

�1011



divide and recombine
recursively. . .

11 01

�10 11

xy = 2nx1y1 + 2n=2(x1y0 + y1x0) + x0y0



compare costs

n n-bit additions versus:

1. divide each factor (roughly) in half

2. multiply the halves (recursively, if they're too big)

3. combine the products with shifts and adds



Gauss's trick

xy = 2nx1y1 + x0y0 + 2n=2 ((x1 + x0)(y1 + y0)� x1y1 � x0y0)



Gauss's payo�
lose one multiplication

1. divide each factor (roughly) in half

2. sum the halves

3. multiply the sum and the halves Gauss-wise

4. combine the products with shifts and adds



closest point pairs
see Wikipedia



divide-and-conquer v0.1





an n lgn algorithm

P is a set of points

1. Construct (sort) Px and Py

2. For each recursive call, construct Lx ;Ly ;Rx ;Ry

3. Recursively �nd closest pairs (l0; l1) and (r0; r1), with

minimum distance �

4. V is the vertical line splitting L and R, D is the

�-neighbourhood of V , and Dy is D ordered by y-ordinate

5. Traverse Dy looking for mininum pairs 15 places apart

6. Choose the minimum pair from Dy versus (l0; l1) and

(r0; r1).



Notes


