CSC236 fall 2012 more complexity: mergesort

Danny Heap heap@cs.toronto.edu BA4270 (behind elevators) http://www.cdf.toronto.edu/~heap/236/F12/ 416-978-5899

Using Introduction to the Theory of Computation, Chapter 3

ヘロト ヘヨト ヘヨト ヘヨト

э

divide and conquer (recombine)

using the Master Theorem

Notes

Class of algorithms: partition problem into *b* roughly equal subproblems, solve, and recombine:

$$T(n) = egin{cases} k & ext{if } n \leq B \ a_1 \, T(\lceil n/b
ceil) + a_2 \, T(\lfloor n/b
ceil) + f(n) & ext{if } n > B \end{cases}$$

where B, k > 0, $a_1, a_2 \ge 0$, and $a_1 + a_2 > 0$. f(n) is the cost of splitting and recombining.

イロト 不得下 イヨト イヨト

ъ

Master Theorem

(for divide-and-conquer recurrences) how to efficially count # of +

If f from the previous slide has $f \in \theta(n^d)$, then

$$T(n) = egin{cases} heta(n^d) & ext{if } a < b^d \ heta(n^d\log n) & ext{if } a = b^d \ heta(n^{\log_b a}) & ext{if } a > b^d \ heta(n^{\log_b a}) & ext{if } a > b^d \ \end{pmatrix}$$

Computer Science UNIVERSITY OF TORONTC

= thon

217 <u>93 ... 1</u>

・ロト ・ 何 ト ・ ヨ ・

1. Unwind the recurrence, and prove a result for $n = b^k$

ヘロト ヘヨト ヘヨト ヘヨト

æ

2. Prove that T is non-decreasing

3. Extend to all n, similar to MergeSort

multiply lots of bits

what if they don't fit into a machine instruction?

1101 ×1011

divide and recombine

recursively...

	11	01	
	imes10	11	
$xy = 2^n \underbrace{x_1 y_1}_{n} +$	$-2^{n/2}$ (2	$x_1 y_0$	$+ \underline{y_1 x_0}) + \underline{x_0 y_0}$

n *n*-bit additions versus:

- 1. divide each factor (roughly) in half
- 2. multiply the halves (recursively, if they're too big)
- 3. combine the products with shifts and adds

Gauss's trick

 $h^2 \longrightarrow h^{\log_2 3}$

Computer Science UNIVERSITY OF TORONTO

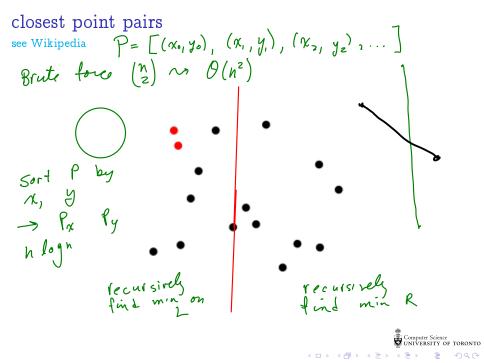
æ

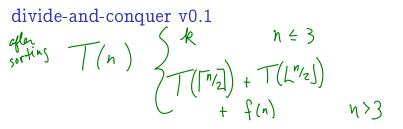
・ロト ・四ト ・ヨト ・ヨト

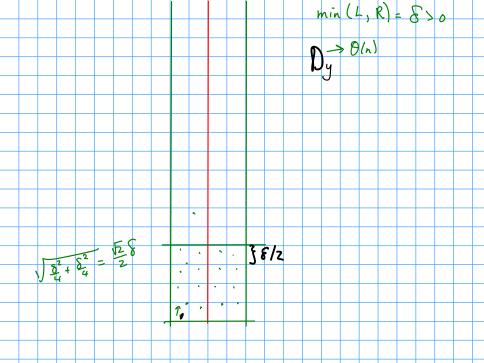
- 1. divide each factor (roughly) in half
- 2. sum the halves
- 3. multiply the sum and the halves Gauss-wise
- 4. combine the products with shifts and adds

(日)、(四)、(日)、(日)、

æ







an $n \lg n$ algorithm (P_{x}, P_{y}) P is a set of points n log 1. Construct (sort) P_x and P_y O(n)2. For each recursive call, construct L_x, L_y, R_x, R_y 3. Recursively find closest pairs (l_0, l_1) and (r_0, r_1) , with minimum distance $\delta = \int (h)$ 4. V is the vertical line splitting L and R, D is the δ -neighbourhood of V, and D_y is D ordered by y-ordinate 5. Traverse D_y looking for mininum pairs 15 places apart $\theta(n)$ 6. Choose the minimum pair from D_y versus (l_0, l_1) and $(r_0, r_1).$

(日) (四) (日)

Notes

