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The cycle is proved in the text, here is one link. Suppose you

believe MI, and you have shown for some property P :

8n 2 N; (80 � i < n ;P(i))) P(n) (1)

Now de�ne a slightly di�erent predicate:

P 0(n) : 80 � i � n ;P(i), in other words, P(i) is true up to and

including n . Using only MI prove 8n ;P 0(n):

Base case: Since we showed (1), and there are no natural

numbers smaller than 0, we have P 0(0).

Induction step: Assume n is an arbitrary natural number and

that P 0(n) is true. It follows from (1) that

P(n + 1) is true, and hence P 0(n + 1) is true.



De�ne sets inductively
. . . so as to use induction on them later

One way to de�ne the natural numbers:

N: The smallest set such that

1. 0 2 N
2. n 2 N) n + 1 2 N.

By smallest I mean N has no proper subsets that satisfy these

conditions. If I leave out smallest, what other sets satisfy the

de�nition?



What can you do with it?

The de�nition on the previous page de�ned the simplest

natural number (0) and the rule to produce new natural

numbers from old (add 1). Proof using Mathematical Induction

work by showing that 0 has some property, and then that the

rule to produce natural numbers preserves the property, that is

1. Prove P(0)

2. Prove that 8n 2 N; P(n)) P(n + 1).



Other structurally-de�ned sets

De�ne E : The smallest set such that

I x ; y ; z 2 E
I e1; e2 2 E ) (e1 + e2), (e1 � e2), (e1 � e2),

and (e1 � e2) 2 E .
Form some expressions in E . Count the number of variables
(symbols from fx ; y ; zg) and the number of operators (symbols

from f+;�;�;�g). Make a conjecture.



Structural induction
P(e) : vr(e) = op(e) + 1

To prove that a property is true for all e 2 E , parallel the
recursive set de�nition:

I Base case: Show that the property is true for the simplest

members, fx ; y ; zg
I Induction step: Show \inheritance": if P(e1) and P(e2),

then all possible combinations (e1 + e2), (e1 � e2),

(e1 � e2), and (e1 � e2) have the property.

Conclude that the property is true of all elements of E .



Structural induction
P(e) : vr(e) = op(e) + 1

Prove 8e 2 E ;P(e)



More structural induction

De�ne the height of x , y , or z as 0, and h((e1 � e2)) as

1 + max(h(e1);h(e2)), if e1; e2 2 E and � 2 f+;�;�;�g.
What's the connection between the number of variables and the

height?



More structural induction
P(e) : vr(e) � 2h(e)



Recursive de�nition
Fibonacci sequence

This sequence comes up in applied rabbit breeding, the height

of AVL trees, and the complexity of Euclid's algorithm for the

GCD:

F (n) =

8<
:
n n < 2

F (n � 2) + F (n � 1) n � 2

What is the sum of n Fibonacci numbers?



Fibonacci numbers
What is

P
i=n

i=0
F (i)?



Number of binary strings without adjacent 0s

This is easy when n = 0 or n = 1. For n > 1 we have the

possibility that the last bit added creates a forbidden 00.

The formula turns out to be related to F (n), and it has the

same annoying property F (n) using the de�nition requires

about n calculations.



Closed form for F (n)?
No rabbit, no hat

The course notes present a proof by induction that

F (n) =
�n �

�
�̂
�
n

p
5

; � =
1 +

p
5

2
; �̂ =

1�p5
2

You can, and should, be able to work through the proof. The

question remains, why did somebody think of � and �̂?



Closed form
. . . without rabbits

Start with the idea that F (n) seems to increase by something

close to a �xed ratio. Let's try calling that r , and r has to

satisfy:

rn = rn�1 + rn�2 ) r2 = r + 1

There are two solutions to the quadratic equation: � and �̂, but

what about the 1=
p
5 factor?

If � and �̂ are solutions, so are linear combinations:

��n + ��̂n = ��n�1 + ��̂n�1 + ��n�2 + ��̂n�2



Rabbits, hats

Match up � and � to solutions:

��0 + ��̂0 = 0 ) � = ��
��1 + ��̂1 = 1 ) �(�� �̂) = 1



Notes
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