# CSC236 fall 2012 <br> subtle induction 

Danny Heap<br>heap@cs.toronto.edu<br>BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/236/F12/
416-978-5899

Using Introduction to the Theory of Computation, Section 1.2-1.3

## Outline

Well－ordering

Higher，and more，base cases

」 ミ 三 $\bar{\equiv}$

## Well-ordering example <br> $\forall n, m \in \mathbb{N}, n \neq 0, R=\{r \in \mathbb{N} \mid \exists q \in \mathbb{N}, m=q n+r\}$ has a smallest element

This is the main part of proving the existence of a unique quotient and remainder:

$$
\forall m \in \mathbb{N}, \forall n \in \mathbb{N}-\{0\}, \exists q, r \in \mathbb{N}, m=q n+r \wedge 0 \leq r<n
$$

The course notes use Mathematical Induction. Well-ordering is shorter and clearer.

## Principle of well-ordering

## Every non-empty subset of $\mathbb{N}$ has a smallest element

Is there something similar for $\mathbb{Q}$ or $\mathbb{R}$ ?
For a given pair of natural numbers $m, n \neq 0$ does the set $R$ satisfy the conditions for well-ordering?

$$
R=\{r \in \mathbb{N} \mid \exists q \in \mathbb{N}, m=q n+r\}
$$

If so, we still need to be sure that

1. $0 \leq r<n$
2. That $q$ and $r$ are unique - no other natural numbers would work
... in order to have

$$
\forall m \in \mathbb{N}, \forall n \in \mathbb{N}-\{0\}, \exists q, r \in \mathbb{N}, m=q n+r \wedge 0 \leq r<n
$$

Every non-empty subset of $\mathbb{N}$ has a smallest element $\forall m \in \mathbb{N}, \forall n \in \mathbb{N}-\{0\}, \exists q, r \in \mathbb{N}, m=q n+r \wedge 0 \leq r<n$

Every non-empty subset of $\mathbb{N}$ has a smallest element $\forall m \in \mathbb{N}, \forall n \in \mathbb{N}-\{0\}, \exists q, r \in \mathbb{N}, m=q n+r \wedge 0 \leq r<n$

Every non-empty subset of $\mathbb{N}$ has a smallest element $P(n)$ : Every round-robin tournament with $n$ players that has a cycle has a 3 -cycle

Claim: $\forall n \in \mathbb{N}-\{0,1,2\}, P(n)$.

If there is a cycle $p_{1}>p_{2}>p_{3} \ldots>p_{n}>p_{1}$, can you find a shorter one?

Every non-empty subset of $\mathbb{N}$ has a smallest element $P(n)$ : Every round-robin tournament with $n$ players that has a cycle has a 3 -cycle

Claim: $\forall n \in \mathbb{N}-\{0,1,2\}, P(n)$.

Every non-empty subset of $\mathbb{N}$ has a smallest element $P(n)$ : Every round-robin tournament with $n$ players that has a cycle has a 3 -cycle
$2^{n}>10 n: P(n)$
Where do we start?

$$
\begin{array}{lll}
P(0) \checkmark & P(3) \times & P(7) V \\
P(1) \times & P(4) \times & P(8) V \\
P(2) \times & P(5) \times & P(6) V \\
& B a s ?
\end{array}
$$

It's not true for several low values of $n$. You could rewrite the predicate as $P^{\prime}(n): 2^{n+6}>10(n+6)$, but why not just start later? omit Base case (for now) $\leftarrow$ start at 6 .
assume $n_{n} \in \mathbb{N}-\{0,1,2,3,4,5, ?\}$, and that $P(n)$ $w_{\text {toul }}{\left.\frac{2^{n}}{}>10 n(1+1)^{2}\right)}_{2^{n}}$

$$
\begin{aligned}
{\left[\begin{array}{rl}
\text { Then } \cdot 2^{n+1}=2 \cdot 2^{n} & 20 n *(\text { by } 1 H) \\
= & 10 n+10 n \\
\geqslant & \\
& 10(n+1)=10 n+10 . \# \operatorname{sins}_{n \geqslant 6 \geqslant 1}
\end{array}\right.} \\
\text { So } P(n+1) \text { follows. }
\end{aligned}
$$

$$
\text { So, } P(n+1) \text { follows } 10(n+1)=P(n) \Longrightarrow P(n+1)
$$

So $\forall n \in \mathbb{N}-\{0,1,2,3,4,5\}, \quad P(n) \Longrightarrow P(n+1)$ Conclude $\forall n \in \mathbb{N}-\{0,1,2,3,4,5\}, P(n)$

## $2^{n}>10 n$

Where do we start?

UNIVERSITY OF TORONTO
$\square$


Look at the graph.

$$
3^{n} \geq n^{3}: P(n)
$$


assume $n \in \mathbb{N}-\{0,1,2\}$ and that $P(n)$ is the, -that is $3^{n} \geqslant n^{3}$.

$$
\begin{aligned}
& 3^{n} \geqslant n^{3} . \quad 3^{n+1}=3 \cdot 3^{n} \\
& \text { Then } \\
& =3 n^{3} \\
& \\
& n^{3} \geqslant(n+1)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Then } 3^{3}=3 \cdot 3=3 n \\
& 3 n^{3} \geqslant(n+1)^{3} \\
& =n^{3}+n^{3}+n^{3} \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& 0 x \\
& 1 \times x \\
& 12^{x} \\
& 111 \\
& 121 \\
& 133^{1}
\end{aligned}
$$

## Notes

UNIVERSITY OF TORONTO
$\square$

