CSC236 fall 2012

complete induction

Danny Heap heap@cs.toronto.edu BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/236/F12/ 416-978-5899

Using Introduction to the Theory of Computation, Section 1.3

Outline

Principle of complete induction

Examples of complete induction

Complete Induction

another flavour needed

Every natural number greater than 1 has a prime factorization

Try some examples

How does the factorization of 8 help with the factorization of 9?

More dominoes

$$(orall n \in \mathbb{N}, \langle P(0), \ldots, P(n-1)
angle \Rightarrow P(n)) \Rightarrow orall n \in \mathbb{N}, P(n)$$

If all the previous cases always implies the current case then all cases are true

Every natural number greater than 1 has a prime factorization

Every natural number greater than 1 has a prime factorization

Trees

definitions, page 32

- A tree is a directed graph
- ▶ A non-empty tree has a root node, r, such that there is exactly one path from r to any other node.
- ▶ If a tree has an edge (u, v), then u is v's parent, v is u's child.
- ▶ Two nodes with the same parent are called siblings.
- ▶ A node with no children is called a leaf. A non-leaf is called an internal node.
- ▶ Binary trees have nodes with ≤ 2 children, and children are labelled either left or right.
- ▶ Internal nodes of full binary trees have 2 children.

Tree examples

know your trees...

Every full binary tree, except the zero tree, has an odd number of nodes

Every full binary tree, except the zero tree, has an odd number of nodes

Every rectangular array of chocolate $m \times n$ squares can be broken up with ? "breaks"

Every rectangular array of chocolate $m \times n$ squares can be broken up with ? "breaks"

Every rectangular array of chocolate $m \times n$ squares can be broken up with ? "breaks"

After a certain natural number n, every postage can be made up by combining 3- and 5- cent stamps