CSC236 fall 2012 complete induction

Danny Heap
heap@cs.toronto.edu BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/236/F12/ 416-978-5899

Using Introduction to the Theory of Computation, Section 1.3

Outline

Principle of complete induction

Examples of complete induction $\equiv \quad \equiv \quad \square Q Q$

Complete Induction

another flavour needed

Every natural number greater than 1 has a prime factorization

Try some examples

How does the factorization of 8 help with the factorization of 9 ?

More dominoes

$$
(\forall n \in \mathbb{N},\langle P(0), \ldots, P(n-1)\rangle \Rightarrow P(n)) \Rightarrow \forall n \in \mathbb{N}, P(n)
$$

If all the previous cases always implies the current case then all cases are true

Every natural number greater than 1 has a prime factorization
$(\forall n \in \mathbb{N},\langle P(0), \ldots, P(n-1)\rangle \Rightarrow P(n)) \Rightarrow \forall n \in \mathbb{N}, P(n)$

Every natural number greater than 1 has a prime factorization
$(\forall n \in \mathbb{N},\langle P(0), \ldots, P(n-1)\rangle \Rightarrow P(n)) \Rightarrow \forall n \in \mathbb{N}, P(n)$

Trees

definitions, page 32

- A tree is a directed graph
- A non-empty tree has a root node, r, such that there is exactly one path from r to any other node.
- If a tree has an edge (u, v), then u is v 's parent, v is u 's child.
- Two nodes with the same parent are called siblings.
- A node with no children is called a leaf. A non-leaf is called an internal node.
- Binary trees have nodes with ≤ 2 children, and children are labelled either left or right.
- Internal nodes of full binary trees have 2 children.

Tree examples

know your trees...

UNIVERSITY OF TORONTO

Every full binary tree, except the zero tree, has an odd number of nodes
$(\forall n \in \mathbb{N},\langle P(0), \ldots, P(n-1)\rangle \Rightarrow P(n)) \Rightarrow \forall n \in \mathbb{N}, P(n)$

Every full binary tree, except the zero tree, has an odd number of nodes
$(\forall n \in \mathbb{N},\langle P(0), \ldots, P(n-1)\rangle \Rightarrow P(n)) \Rightarrow \forall n \in \mathbb{N}, P(n)$

Every rectangular array of chocolate $m \times n$ squares can be broken up with? "breaks"
$(\forall n \in \mathbb{N},\langle P(0), \ldots, P(n-1)\rangle \Rightarrow P(n)) \Rightarrow \forall n \in \mathbb{N}, P(n)$

Every rectangular array of chocolate $m \times n$ squares can be broken up with? "breaks"
$(\forall n \in \mathbb{N},\langle P(0), \ldots, P(n-1)\rangle \Rightarrow P(n)) \Rightarrow \forall n \in \mathbb{N}, P(n)$

Every rectangular array of chocolate $m \times n$ squares can be broken up with? "breaks"
$(\forall n \in \mathbb{N},\langle P(0), \ldots, P(n-1)\rangle \Rightarrow P(n)) \Rightarrow \forall n \in \mathbb{N}, P(n)$

After a certain natural number n, every postage can be made up by combining $3-$ and $5-$ cent stamps

