

Using Introduction to the Theory of Computation, Section 1.3

Outline

Principle of complete induction

Examples of complete induction

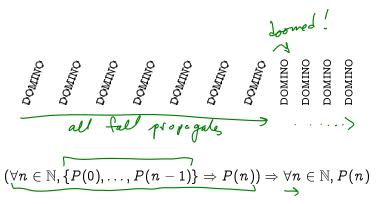
Complete Induction

another flavour needed

Every natural number greater than 1 has a prime factorization $2=2, 4=2\times2$ $3=3, 5=5, 6=2\times3, 7=7$ Try some examples $q=3\times3, 3=3\times2$

How does the factorization of 8 help with the factorization of 9?

More dominoes



If all the previous cases always implies the current case then all cases are true

P(n): Every natural number greater than 1 has a prime factorization $[N - \{o, 1\}]$ $(\forall n \in \mathbb{N}, \{P(\widehat{\bullet}), \dots, P(n-1)\} \Rightarrow P(n)) \Rightarrow \forall n \in \mathbb{N} \ P(n) \\ assume that n \in \mathbb{N} - \mathfrak{F}_{0,1}\mathfrak{P} \\ and that for all natural numbers \\ | < j < h, P(j) is true (j has prime factorization).$ Then n is either prime a not prime. Case 1: nis prime Then n= n is its own prime factorization! Case 2: n is not prime Then n has at least 3 factors, 1, n, and x = 1, x = n. But SU I < X < N, sine X is a factor 1, therent from 1 and n. Then also, n has a factor $y = n/\chi$. $y \pm n$ and $y \neq 1$, since otherwise $\gamma y \pm n$. Computer Science ◆□ ▶ ◆□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ◆ □ ●

Every natural number greater than 1 has a prime factorization $(\forall n \in \mathbb{N}, \{P(\mathbf{0}), \dots, P(n-1)\} \Rightarrow P(n)) \Rightarrow \forall n \in \mathbb{N}, P(n)$ Now by IH X and y have prime toctorizations. ie x=p, X... ×p, and y=q, X...×qi So, n = ty = Pix ... + Pk gix ... × gi has a prime factor, 2 alion Then, since in both possible cases, n has a prime factorization, we conclude. In has a prime factorization, that is, P(a) Since n Was arbitrary, this shows that YneIN - 20,13, 2P(2),..., P(n-1)3 => P(n). Conclude Vne N-So, 13, n has a prime taclorization

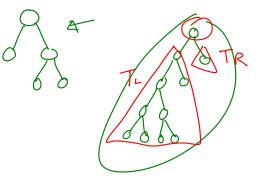
Trees definitions, page 32 Lo ov

・ロト ・ 同ト ・ ヨト

- A tree is a directed graph
- ► A non-empty tree has a root node, r, such that there is exactly one path from r to any other node.
- If a tree has an edge (u, v), then u is v's parent, v is u's child.
- ▶ Two nodes with the same parent are called siblings.
- ► A node with no children is called a leaf. A non-leaf is called an internal node.
- ▶ Binary trees have nodes with ≤ 2 children, and children are labelled either left or right.
- Internal nodes of full binary trees have 2 children.

Tree examples

know your trees...



・ロト ・回ト ・ヨト ・

Every full binary tree, except the zero tree, has an odd number of nodes $(\forall n \in \mathbb{N}, \{P(\mathbf{0}), \dots, P(n-1)\} \Rightarrow P(n)) \Rightarrow \forall n \in \mathbb{N}, P(n)$ assume n is a natural number greater than 0, and that every FBT with oci cn the hodes has an odd number of hodes.

Every full binary tree, except the zero tree, has an odd number of nodes

 $(\forall n \in \mathbb{N}, \{P(0), \dots, P(n-1)\} \Rightarrow P(n)) \Rightarrow \forall n \in \mathbb{N}, P(n)$

