# CSC236 fall 2012 <br> regular expressions 

Danny Heap<br>heap@cs.toronto.edu

BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/236/F12/
416-978-5899

Using Introduction to the Theory of Computation, Chapter 7

## Outline

## regular expressions

product, non-deterministic FSAs

regular languages
notes

## another way to define languages

In addition to the language accepted by DFSA $L(M)$ and set description $L=\{\ldots\}$.

Definition: The regular expressions (regexps or REs) over alphabet $\Sigma$ is the smallest set such that:

1. $\}, \epsilon$, and $a$, for every $a \in \Sigma$ are REs over $\Sigma$
2. if $T$ and $S$ are REs over $\Sigma$, then so are:

- $T+S$ (union) - lowest precedence operator
- TS (concatenation) - middle precedence operator
- $T^{*}$ (star) - highest precedence


## regular expression to language:

The $L(R)$, the language denoted (or described) by $R$ is defined by structural induction:

Basis: If $R$ is a regular expression by the basis of the definition of regular expressions, then define $L(R)$ :

- $L(\emptyset)=\emptyset$ (the empty language)
- $L(\varepsilon)=\{\varepsilon\}$ (the language consisting of just the empty string)
- $L(a)=\{a\}$ (the language consisting of the one-symbol string)
Induction step: If $R$ is a regular expression by the induction step of the definition, then define $L(R)$ :
- $L(S+T)=L(S) \cup L(T)$
- $L(S T)=L(S) L(T)$
- $L\left(T^{*}\right)=L(T)^{*}$


## regexp examples

- $L(0+1)=\{0,1\}$
- $L\left((0+1)^{*}\right)$ All binary strings over $\{0,1\}$
- $L\left((01)^{*}\right)=\{\varepsilon, 01,0101,010101, \ldots\}$
- $L\left(0^{*} 1^{*}\right) 0$ or more 0 s followed by 0 or more 1 s .
- $L\left(0^{*}+1^{*}\right) 0$ or more 0 s or 0 or more 1 s.
- $L\left((0+1)(0+1)^{*}\right)$ Non-empty binary strings over $\{0,1\}$.


## example

$L=\left\{x \in\{0,1\}^{*} \mid x\right.$ begins and ends with a different bit $\}$

引 $\bar{\equiv}$

## RE identities

some of these follow from set properties... others require some proof (see 7.2.5 example)

- communitativity of union: $R+S \equiv S+R$
- associativity of union: $(R+S)+T \equiv R+(S+T)$
- associativity of concatenation: $(R S) T \equiv R(S T)$
- left distributivity: $R(S+T) \equiv R S+R T$
- right distributivity: $(S+T) R \equiv S R+T R$
- identity for union: $R+\emptyset \equiv R$
- identity for concatenation: $R \varepsilon \equiv R \equiv \varepsilon R$
- annihilator for concatenation: $\emptyset R \equiv \emptyset \equiv R \emptyset$
- idempotence of Kleene star: $\left(R^{*}\right)^{*} \equiv R^{*}$


## product construction

$L$ is the language of binary strings over $\{0,1\}^{*}$ with two 1 s in a row and an even number of 0 s
idea: $\delta\left(\left(q_{i}, q_{j}\right), a\right)=\left(\delta\left(q_{i}, a\right), \delta\left(q_{j}, a\right)\right)$


## non-deterministic FSA (NFSA) example

 FSA that accepts $L\left((010+01)^{*}\right.$

## they're equivalent:

$L=L(M)$ for some DFSA $M \Leftrightarrow L=L\left(M^{\prime}\right)$ for some NFSA $M^{\prime} \Leftrightarrow$
$L=R(R)$ for some regular expression $R$

## notes

Computer Science
UNIVERSITY OF TORONTO


