

automata and languages

Danny Heap heap@cs.toronto.edu BA4270 (behind elevators) http://www.cdf.toronto.edu/~heap/236/F12/ 416-978-5899

Using Introduction to the Theory of Computation, Chapter 7

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

ъ

formal languages

FSAs

notes

some definitions

alphabet: finite, non-empty set of symbols, e.g. $\{a, b\}$ or $\{0, 1, -1\}$. Conventionally denoted Σ .

string: finite (including empty) sequence of symbols over an alphabet: abba is a string over {a, b}. Convention: ε is the empty string, never an allowed symbol, Σ* is set of all strings over Σ.

language: Subset of Σ^* for some alphabet Σ . Possibly empty, possibly infinite subset. E.g. {}, {*aa, aaa, aaaa, ...*}.

3

N.B.: $\{\} \neq \{\varepsilon\}.$

Many problems can be reduced to languages: logical formulas, identifiers for compilation, natural language processing. Key question is recognition:

Given language L and string s, is $s \in L$?

Languages may be described either by descriptive generators (for example, regular expressions) or procedurally (e.g. finite state automata)

(日)、(四)、(日)、(日)、

more notation

string length: denoted |s|, is the number of symbols in s, e.g. |bba| = 3.

s = t: if and only if |s| = |t|, and $s_i = t_i$ for $1 \le i \le |s|$.

- s^R : reversal of s is obtained by reversing symbols of s, e.g. $1011^R = 1101$.
- st or $s \circ t$: contcatenation of s and t all characters of s followed by all those of t, e.g. $bba \circ bb = bbabb$.
 - s^k : denotes s concatenated with itself k times. E.g., $ab^3 = ababab$, $101^0 = \varepsilon$.

A D F A D F A D F A D F

э

 Σ^n : all strings of length *n* over Σ , Σ^* denotes all strings over Σ .

language operations

 \overline{L} : Complement of L, i.e. $\Sigma^* - L$. If L is language of strings over $\{0, 1\}$ that start with 0, then \overline{L} is the language of strings that begin with 1 plus the empty string.

 $L \cup L'$: union

 $L \cap L'$: intersection

L - L': difference

 $\operatorname{Rev}(L): = \{s^R : s \in L\}$

(日)、(四)、(日)、(日)、

more language operations

exponentiation:
$$L^k$$
 is concatenation of L k times. Special case,
 $L^0 = \{\varepsilon\}$, including $L = \{\}!$

イロト イヨト イヨト イヨト

æ

Kleene star: $L^* = L^0 \cup L^1 \cup L^2 \cup \ldots$

states needed to classify a string

what state is a stingy vending machine in based on coins? accepts only nickles (a), dimes (b), and quarters (c), no change given, and everything costs 30 cents useful toy (you'll need JRE)

δ	0	5	10	15	20	25	\geq 30
n	5	10	15	20	25	\geq 30	\geq 30
d	10	15	20	25	\geq 30	\geq 30	\geq 30
q	25	\geq 30					

Computer Science UNIVERSITY OF TORONTO

・ロト ・個ト ・モト ・モト

build an automaton with formalities... quintuple: $(Q, \Sigma, q_0, F, \delta)$ Q is set of states, Σ is finite, non-empty alphabet, q_0 is start state F is set of accepting states, and $\delta : Q \times \Sigma \mapsto Q$ is transition function

We can extend $\delta: Q \times \Sigma \mapsto Q$ to a transition function that tells us what state a string s takes the automaton to:

$$\delta^*: Q imes \Sigma^* \mapsto Q \qquad \delta^*(q,s) = egin{cases} q & ext{if } s = arepsilon \ \delta(\delta^*(q,s'),a) & ext{if } s' \in \Sigma^*, a \in \Sigma, s = \ \end{array}$$

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

э.

String s is accepted if and only iff $\delta^*(q_0, s) \in F$, it is rejected otherwise.

example — an odd machine

devise a machine that accepts strings over $\{a, b\}$ with an odd number of as

Formal proof requires inductive proof of invariant:

 $\delta^*(E,s) = \begin{cases} E & ext{if} s ext{ has even number of } as \\ O & ext{if} s ext{ has odd number of } as \end{cases}$

Computer Science UNIVERSITY OF TORONTO

・ロト ・四ト ・ヨト

more odd/even

L is the language of binary strings with an odd number of as, but even length Devise a machine for L

notes

