$$
\begin{aligned}
& \text { T2 papers - after (some) FSAS } \\
& \text { A3 - up tonight. } \\
& \text { CSC 236 fall } 2012 \\
& \text { automate and languages }
\end{aligned}
$$

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/236/F12/
416-978-5899

Using Introduction to the Theory of Computation, Chapter 7

Outline

formal languages

FSAs
notes

UNIVERSITY OF TORONTO • $\bar{\equiv}$

some definitions

alphabet: finite, non-empty set of symbols, e.g. $\{a, b\}$ or $\{0,1,-1\}$. Conventionally denoted Σ.
string: finite (including empty) sequence of symbols over an alphabet: abba is a string over $\{a, b\}$. Convention: ε is the empty string, never an allowed symbol, Σ^{*} is set of all strings over Σ.
language: Subset of Σ^{*} for some alphabet Σ. Possibly empty, possibly infinite subset. E.g. \{\}, $\{a a, a a a, a a a a, \ldots\}$.
N.B.: $\} \neq\{\varepsilon\}$.

Many problems can be reduced to languages: logical formulas, identifiers for compilation, natural language processing. Key question is recognition:

Given language L and string s, is $s \in L$?

Languages may be described either by descriptive generators (for example, regular expressions) or procedurally (e.g. finite state automata)

more notation

string length: denoted $|s|$, is the number of symbols in s, e.g. $|b b a|=3$.

$$
s=t: \text { if and only if }|s|=|t| \text {, and } s_{i}=t_{i} \text { for } 1 \leq i \leq|s|
$$

s^{R} : reversal of s is obtained by reversing symbols of s, e.g. $1011^{R}=1101$.
$s t$ or $s \circ t$: contcatenation of s and t - all characters of s followed by all those of t, e.g. $b b a \circ b b=b b a b b$.
s^{k} : denotes s concatenated with itself k times. E.g., $a b^{3}=a b a b a b, 101^{0}=\varepsilon$.
Σ^{n} : all strings of length n over Σ, Σ^{*} denotes all strings over Σ.

language operations

\bar{L} : Complement of L, i.e. $\Sigma^{*}-L$. If L is language of strings over $\{0,1\}$ that start with 0 , then \bar{L} is the language of strings that begin with 1 plus the empty string.
$L \cup L^{\prime}$: union
$L \cap L^{\prime}$: intersection
$L-L^{\prime}:$ difference

$$
\operatorname{Rev}(L):=\left\{s^{R}: s \in L\right\}
$$

concatenation: $L L^{\prime}$ or $L \cdot L^{\prime}=\left\{r t \mid r \in L, t \in L^{\prime}\right\}$. Special cases

$$
L\{\varepsilon\}=L=\{\varepsilon\} L, \text { and } L\}=\{ \}=\{ \} L
$$

more language operations

exponentiation: L^{k} is concatenation of $L k$ times. Special case, $L^{0}=\{\varepsilon\}$, including $L=\{ \}$!

Kleene star: $L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \ldots$

states needed to classify a string

what state is a stingy vending machine in based on coins?
accepts only nickles (a), dimes (b), and quarters (c), no change given, and everything costs 30 cents useful toy (you'll need JRE)

δ	0	5	10	15	20	25	≥ 30
n	5	10	15	20	25	≥ 30	≥ 30
d	10	15	20	25	≥ 30	≥ 30	≥ 30
q	25	≥ 30					

build an automaton with formalities...

quintuple: $\left(Q, \Sigma, q_{0}, F, \delta\right)$
Q is set of states, Σ is finite, non-empty alphabet, q_{0} is start state
F is set of accepting states, and $\delta: Q \times \Sigma \mapsto Q$ is transition function

We can extend $\delta: Q \times \Sigma \mapsto Q$ to a transition function that tells us what state a string s takes the automaton to:

$$
\delta^{*}: Q \times \Sigma^{*} \mapsto Q \quad \delta^{*}(q, s)= \begin{cases}q & \text { if } s=\varepsilon \\ \delta\left(\delta^{*}\left(q, s^{\prime}\right), a\right) & \text { if } s^{\prime} \in \Sigma^{*}, a \in \Sigma, s=\end{cases}
$$

String s is accepted if and only iff $\delta^{*}\left(q_{0}, s\right) \in F$, it is rejected otherwise.
example - an odd machine
devise a machine that accepts strings over $\{a, b\}$ with an odd number of a s

Formal proof requires inductive proof of invariant:

$$
\delta^{*}(E, s)=\left\{\begin{array} { l }
{ E } \\
{ O }
\end{array} \left[\begin{array}{l}
\text { if } \\
\text { if }
\end{array} \begin{array}{l}
\text { has even number of } a s \\
s h a s \text { odd number of } a s
\end{array}\right.\right.
$$

induction on $|S|$
Structural induction on S s $\sum=\{a, b\}$ def Σ^{*} : (1) Smallest set such that
(1) bases
(2) (induction step) if $y^{\prime} \in \Sigma^{*}$, than $y^{\prime} c \in \Sigma^{*}$, for $c \in \Sigma$
float machine

$$
\begin{aligned}
& L_{1}=\{0, \ldots, 9\} \\
& \left.L_{2}=\{+,-\}, L_{3}=\{\cdot\} \quad\right\urcorner \cup \mathcal{L}_{1}^{\prime} \\
& L_{F}=\left\{s \in L_{2}^{j} L_{1}^{m} L_{3}^{k} L_{1}^{n} \mid j, k \leq 1, m, n \geq 1\right\}
\end{aligned}
$$

Devise a machine that accepts L_{F}

more odd/even

L is the language of binary strings
with an odd number of as, but even length
Devise a machine for L
$\equiv \quad \equiv \quad \square Q \subset$

notes

Computer Science
UNIVERSITY OF TORONTO

