# CSC236 fall 2012 <br> Theory of computation 

Danny Heap<br>heap@cs.toronto.edu<br>BA4270 (behind elevators)<br>Course web page 416-978-5899

Using Introduction to the Theory of Computation, Section 1.2

## Outline

Introduction

Chaper 1, Simple induction

Notes A 三 $\bar{\equiv}$

## Why reason about computing?

- It's more than just hacking
- Testing isn't enough
- You might get to like it (?!*)


## How to reason about computing

- It's messy...
- It's art...


## How to do well at this course

- Read the course information sheet as a two-way promise
- Question, answer, record, synthesize
- Collaborate with respect


## What should you already know?

- Chapter 0 material from Introduction to Theory of Computation
- CSC165 material, especially the mathematical prerequisites (Chapter 1.5), proof techniques (Chapter 3), and the introduction to big-Oh (Chapter 4).
- But you can relax the structure


## What'll you know by December?

- Understand, and use, several flavours of induction
- Complexity and correctness of programs - both recursive and iterative
- Formal languages, regular languages, regular expressions


## Domino fates foretold

#  <br> $[P(0) \wedge(\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Longrightarrow \forall n \in \mathbb{N}, P(n)$ 

If the initial case works, and each case that works implies its successor works, then all cases work
$P(n)$ :
Every set with $n$ elements has exactly $2^{n}$ subsets
Use: $[P(0) \wedge(\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Longrightarrow \forall n \in \mathbb{N}, P(n)$

$$
\begin{array}{lll}
P(0): & \} \\
P(1): & \{y\} \longrightarrow & \{\}\} \\
\text { Scratch work: }
\end{array}
$$

Partition to
$P(2)$

$f: f^{-} \rightarrow f^{+}, f(s) \rightarrow$ su $\{x\}$ is a bijectisin

$$
f^{-} \because \mathcal{L}^{+} \rightarrow \mathcal{L}^{-}, \quad f(x) \rightarrow s-\{x\}
$$

Every set with $n$ elements has exactly $2^{n}$ subsets...
Use: $P(0) \wedge(\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Rightarrow \forall n \in \mathbb{N}, P(n)$
Proof $\forall n \in \mathbb{N}, P(n)$, by $M \mid$ lake SI)
Bose cars of $n=0$, the only set of size 0 is
$\left\}\right.$ with set of subset $\left|\left\{\}\} \mid=1=2^{\circ}\right.\right.$, so $P(0)$ is tue.
Induction Stop $[$ show that $\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1)]$ assume $n \in \mathbb{N}$ (generic) and that $P(n)$ is tine. $1 H$ If $S$ is a generic set with $|S|=n+1$. Now there is some $x \in S$, sines $n+1>0$, and we partition the oufsicts of $S$ in tho sets: contain the set of subsets I $S$ that don' $t$ contain $x$, and $)^{+}$is the set of subsels of $s$ that do contain $x$.

Every set with $n$ elements has exactly $2^{n}$ subsets...
Use: $[P(0) \wedge(\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Longrightarrow \forall n \in \mathbb{N}, P(n)$
Since $f: \mathcal{A}^{-1} \rightarrow \mathcal{A}^{+}, f(s)=\Delta U\{x\}$ is a bijection we know $\left|f^{-1}\right|=\left|f^{+}\right|$. By $1 H$, $\left|f^{-1}\right|=2^{n}$, becons. $A^{-}$is the set of subsets of $S-\{x\}^{3}$, and $|S-\{x\}|=n+1-1=n$. So $S \operatorname{has}\left|\perp^{-1}\right|+\left|\mathcal{L}^{+}\right|=2^{n}+2^{n}=2^{n+1}$, subsets. Sind $S$ was arbitrary, "his means every set of size $n+1$ has $2^{n+1}$ subsets, ie $p(n+1)$.
Since, for generic $n, P(n) \Rightarrow P(n+1)$, this shows $\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1)$.
Conclude, $\forall n \in \mathbb{N}, P(n)$, by $M 1$
$P(n)$ :
For every $n \in \mathbb{N} / 12^{n}-1$ is a multiple of 11
Use: $[P(0) \wedge(\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Rightarrow \forall n \in \mathbb{N}, P(n)$
$p(0): \quad 12^{0}-1=0=11 \times 0$
$p(1): \quad 12^{1}-1=11=11 \times 1$
$P(2): \quad 12^{2}-1=143=11 \times 13$
Scratch work: How to connect $n$ to $n+1$ ?
assume then is some $z \in \mathbb{Z}$ st

$$
\begin{aligned}
12^{n}-1 & =11 z \\
12\left(12^{n}-1\right) & =12 \cdot 11 \cdot z \\
12^{n+1}-12 & =12^{n+1}-1-11=11 \cdot 12 \cdot z
\end{aligned}
$$

rewrite, $12^{n+1}-1=11.12 z+11=11(12 z+1)$

For every $n \in \mathbb{N}, 12^{n}-1$ is a multiple of 11
Use: $[P(0) \wedge(\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Rightarrow \forall n \in \mathbb{N}, P(n)$
Proof that $\forall n \in \mathbb{N}, P(n)$ using $M 1$.
Buss case you do it,
Induction step [show that $\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1)]$
Assume $n \in \mathbb{N}$ and that $P(n)$ is tree it.
Then there is som $z \in \mathbb{Z}$ st

$$
12^{n}-1=11 z-b y 1 H \text {. }
$$

So $12\left(12^{n}-1\right)=11-12 z$
rewritten, this means $12^{n+1}-1=11(12 z+1)$
So, the is some $z^{\prime} \in \mathbb{Z}$ st $\left|2^{n+1}-\right|=\| z^{\prime}$, just sick $Z^{\prime}=12 z+1 \in \mathbb{Z} \#$ by clove of $x+$ That is, $P(n+1)$ is true.
So, $\forall n \in \mathbb{N}^{\prime} P(n) \Rightarrow P(n+1)$, since $n$ a rbitayy

For every $n \in \mathbb{N}, 12^{n}-1$ is a multiple of 11
Use: $[P(0) \wedge(\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Longrightarrow \forall n \in \mathbb{N}, P(n)$
Condude, $\forall n \in \mathbb{N}, P(n)$, by $M I$.

The units digit of $3^{n}$ is either $1,3,7$, or 9
Use: $[P(0) \wedge(\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Longrightarrow \forall n \in \mathbb{N}, P(n)$

$$
\begin{array}{ll}
3_{1}^{0}=1 & 3^{3}=2(7) \\
3^{2}=3 & 3^{4}=8(1) \\
3^{2}=9 &
\end{array}
$$

How many base cases do we need?
1 base case!,
(formal proof written after lecture) $\rightarrow$
$P(n)$ :
The units digit of $3^{n}$ is either $1,3,7$, or 9
Use: $[P(0) \wedge(\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Rightarrow \forall n \in \mathbb{N}, P(n)$
Proof that $\forall n \in \mathbb{N}, P(n)$, by mathematical induction
$\frac{\text { Base case if }}{P(0) \text { is tue }}$. $P(0)$ is the
Induction step $[$ show that $\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1)]$ assume $n \in \mathbb{N}$ and $P(n)$ w thuD. $\leftarrow$ (Induction nypotabias) 11

Then the $n$ is some $k \in \mathbb{N}$ and $t \in\{1,3,7,9\}$ such that $3^{n}=10 k+t$, by $1 H$. This means that $3^{n+1}=3 \cdot 3^{n}=3(10 k+t)=30 k+3 t$. There me 4 possible cases for $t$ :
$\frac{\text { Case 1, } t=1}{\text { so the units digit }} 3^{n+1}=30 k+3=10(3 k)+3$, so the units digit $3 \in\{1,3,7,9\}$.
lase 2, $t=3$ Then $3^{n+1}=30 k+9$, so its units digit $9 \in\{1,3,7,9\}$.

The units digit of $3^{n}$ is either $1,3,7$, or 9
Use: $[P(0) \wedge(\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Longrightarrow \forall n \in \mathbb{N}, P(n)$
Case $3, t=7$ Then $3^{n+1}=30 k+21=10(3 k+2)+1$, so the units digit is $1 \in\{1,3,7,9\}$
Case 4, $t=9$ Then $3^{n+1}=30 k+27=10(3 k+2)+7$,
So the units digit is $7 \in\{1,3,7,9\}$.
In all 4 possible cases, $t \in\{1,3,7,9\}$, so it follows that $3^{n+1}$ has its unit digit in $\{1,3,7,9\}$, that is $P(n+1)$
So, $\forall n \in \mathbb{N}, P(n) \Longrightarrow P(n+1)$, sind by assuming $P(n)$ for an arbitron $n$ we derive $P(n+1)$.
conclude, fy $M 1, \forall n \in \mathbb{N}, P(n)$.

## How many odd-sized subsets of a set of size $n$ ?

Use $[P(0) \wedge(\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Longrightarrow \forall n \in \mathbb{N}, P(n)$

What's $P(n)$ ?

## How many odd-sized subsets of a set of size $n$ ?

Use $[P(0) \wedge(\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Longrightarrow \forall n \in \mathbb{N}, P(n)$

## How many odd-sized subsets of a set of size $n$ ?

Use $[P(0) \wedge(\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Longrightarrow \forall n \in \mathbb{N}, P(n)$

## How many odd-sized subsets of a set of size $n$ ?

Use $[P(0) \wedge(\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1))] \Longrightarrow \forall n \in \mathbb{N}, P(n)$

## Notes

UNIVERSITY OF TORONTO
$\square$

