
CSC236, Fall 2012

Assignment 3

sample solution

1. Let L = fx 2 f0; 1g� j fourth-last symbol in x is 0g. Prove that any DFSA that accepts L has at least

16 states. Hint: Consider the sixteen binary strings of length four, and what happens if two of them

drive a DFSA to the same state.

Proof (by contradiction): Assume there is a DFSA M , with start state s and fewer than 16 states, that

accepts L.

Then each of the sixteen binary strings of length four drives M to its respective state, and by the

pigeonhole principle, there will be at least one pair of strings that drive M to the same state, let's

call it state q. Denote this pair of strings by their bits as b0b1b2b3 and b00b
0

1b
0

2b
0

3, and note that

(being di�erent strings) there is some 0 � i � 3 with bi 6= b0
i
. Without loss of generality, assume

that bi = 0 and b0
i
= 1.

Now consider the new pair of strings produced by appending a su�x x consisting of i 0s to each

string. By construction b0b1b2b3x has a zero in the fourth-last place, and should be accepted by

M , whereas b00b
0

1b
0

2b
0

3x has a 1 in the fourth-last place and should be rejected. However, by our

assumption, both strings drive M to state q, that is ��(s; b00b
0

1b
0

2b
0

3) = ��(s; b0b1b2b3) = q, so

��(s; b0b1b2b3x) = ��(q; x) = ��(s; b00b
0

1b
0

2b
0

3x) = q0

However, q0 must be either an accepting or non-accepting state, so either b0b1b2b3x or b00b
0

1b
0

2b
0

3x

have driven M to the wrong state. Contradiction

Since I assumed there was a DFSA M that accepted L with fewer than 16 states, and then derived a

contradiction, the assumption is false, and any DFSA that accepts L must have at least 16 states.

2. Prove that the following terminates, given the precondition x 2 N:

y = x * x

while not y == 0 :

x = x - 1

y = y - 2 * x - 1

Hint: Trace through the code for a few small values of x, then derive (and prove) a loop invariant that

helps prove termination.

1

Solution: Experimenting with x 2 f0; 1; 2; 3g I see that at the end of each loop iteration y = x2, and that

x is steadily decreasing. I need to exhibit a decreasing sequence in N, and hxii seems appropriate,

provided I can show that xi � 0. This suggests the following loop invariant:

yi = x2
i
and xi 2 N

Of course, the claim only makes sense if the loop iterates i times, so I have:

P (i): If the precondition is satis�ed, and there are at least i iterations of the loop, then yi = x2
i

and xi 2 N.

Claim: 8i 2 N; P (i). I prove this by mathematical induction on i

Base case, i = 0: If there have been at least 0 iterations of the loop, then by the precondition

x0 2 N, and y0 = x20 by the assignment statement.

Induction step: Assume i 2 N, that P (i), and there is an (i+ 1)th iteration of the loop.

Then, by the IH, yi = x2
i
, and (since the loop condition was satis�ed in order to begin

iteration i+ 1) x2
i
6= 0, so xi 6= 0.

By the IH, xi 2 N, so (since it's not 0) xi � 1.

By the �rst assignment statement within the loop, xi+1 = xi�1 � 1�1, so xi+1 is an integer

no smaller than 0, in other words a natural number.

By the second assignment statement, since xi+1 = xi � 1, and by the IH yi = x2
i
:

yi+1 = yi � 2xi+1 � 1 = x2
i
� 2(xi � 1)� 1 = x2

i+1

Thus P (i+ 1) holds.

Since for a generic i 2 N P (i) implies P (i+ 1), then 8i 2 N; P (i)) P (i+ 1).

I conclude 8i 2 N; P (i), by mathematical induction.

Claim: hxii, the sequence of values of x after the loop iterates i times, is a decreasing sequence

in N.

Proof: The loop invariant establishes that hxii is a sequence in N, it remains to prove that it is

decreasing. If there is an (i+ 1)th iteration of the loop, then xi+1 = xi � 1, so xi > xi+1. Thus

hxii is a decreasing sequence in N.

By the Well-Ordering Principle, any decreasing sequence in N is �nite, so there are �nitely many

elements in hxii, hence �nite iterations of the loop. In other words, the loop terminates.

3. Design a DFSA that accepts the language of binary strings over f0; 1g that have a multiple of 4 1s.

Devise, and prove a state invariant, and explain how it shows that your DFSA accepts this language.

Solution: I'll need at least four states, one for the remainder of the number of 1s after division by four.

My accepting state will be where my machine is driven by strings where the number of ones has

remainder 0 after division by four. I'll label each state by the appropriate remainder, and have

state 0 be the start state (since " has 0 ones, a multiple of 4).

2

q0
q1

q2q3

1

1

1

1

0

0

0

0

I need to prove the following state invariant to convince you that this machine accepts the language

L. My predicate is P (s) :

P (s) : ��(q0; s) =

8>>>><
>>>>:

q0 if the number of 1s in s has remainder 0 when divided by 4

q1 if the number of 1s in s has remainder 1 when divided by 4

q2 if the number of 1s in s has remainder 2 when divided by 4

q3 if the number of 1s in s has remainder 3 when divided by 4

I prove that 8s 2 f0; 1g�; P (s).

Proof (structural induction on s): s is either " or s = ya, where y 2 f0; 1g� and a 2 f0; 1g. I consider

each case.

Case s = ": In this case ��(q0; s) = q0 by de�nition of extended transition function ��, and

P (") holds. Note that the claims about j"j having remainders 1{3 are vacuously true.

Case s = ya where y 2 f0; 1g� and a 2 f0; 1g: I assume P (y), and then use this to prove that

P (s) follows. There are two subcases, according to whether a = 0 or a = 1.

3

Case a = 0: In this case the number of 1s in y is unchanged by appending 0, so

��(q0; s) = ��(q0; y0) = �(��(q0; y); 0)

by P (y) =

8>>>><
>>>>:

�(q0; 0) if the number of 1s in y has remainder 0 when divided by 4

�(q1; 0) if the number of 1s in y has remainder 1 when divided by 4

�(q2; 0) if the number of 1s in y has remainder 2 when divided by 4

�(q3; 0) if the number of 1s in y has remainder 3 when divided by 4

=

8>>>><
>>>>:

q0 if the number of 1s in s = y0 has remainder 0 when divided by 4

q1 if the number of 1s in s = y0 has remainder 1 when divided by 4

q2 if the number of 1s in s = y0 has remainder 2 when divided by 4

q3 if the number of 1s in s = y0 has remainder 3 when divided by 4

So, P (s) follows in this case.

Case a = 1: In this case the number of 1s in y is increased by 1 upon appending 1, so

��(q0; s) = ��(q0; y1) = �(��(q0; y); 1)

by P (y) =

8>>>><
>>>>:

�(q0; 1) if the number of 1s in y has remainder 0 when divided by 4

�(q1; 1) if the number of 1s in y has remainder 1 when divided by 4

�(q2; 1) if the number of 1s in y has remainder 2 when divided by 4

�(q3; 1) if the number of 1s in y has remainder 3 when divided by 4

=

8>>>><
>>>>:

q1 if the number of 1s in s = y1 has remainder 1 when divided by 4

q2 if the number of 1s in s = y1 has remainder 2 when divided by 4

q3 if the number of 1s in s = y1 has remainder 3 when divided by 4

q0 if the number of 1s in s = y1 has remainder 0 when divided by 4

So, P (s) follows in this case (the branches of the invariant are simply permuted).

So, in both possible cases P (s) follows.

I conclude, by structural induction, that 8s 2 f0; 1g�; P (s).

Since all four possible states are listed in the invariant, I know that P (s) means that s drives

the machine to state q0 if, and only if, s has a multiple of 4 1s. So this machine accepts the

language.

4. Design an iterative binary search algorithm that is correct with respect to the following precondi-

tion/postcondition pair:

Precondition: A has elements that are comparable with x, |A|=n>0, and A is sorted in non-decreasing

order.

Postcondition: binSearch(x, A) terminates and returns an index p that satis�es:

A[0 : : : p] � x < A[p+ 1 : : : n� 1]

�1 � p � n� 1

Prove that if the precondition is satis�ed, then your algorithm terminates and satis�es the post-

condition. Hint: Use the approach from lecture (no need to provide the pictures) where you

develop a loop invariant as you write the code.

4

Solution: Initially the precondition guarantees a sorted, non-empty array A, and I know nothing about

how any of the elements compare to x. After i loop iterations, I'd like to reduce the scope of this

ignorance to the subarray A[b ... e], for indices b and e, in other words

A[0 : : : bi � 1] � x < A[ei + 1 : : : n� 1]

I can certainly make this initially true if I initialize with

b = 0

e = n-1

There's still work to do so long as the subarray A[b ... e] isn't empty, so my loop condition is

while b <= e

Within the loop I should cut the remaining search space in half, so I choose m midway through

m = (b+e) // 2

Then I determine whether the midpoint belongs to the portion to the left of b, or the portion to

the right of e:

if A[m] <= x :

b = m+1

else :

e = m - 1

After the last iteration we'll return p=b-1, so our completed code looks like:

binSearch(A, x) # A non-empty, sorted non-decreasing, comparable to x

b = 0

e = len(A) - 1

while b <= e : # A[0.. b-1] <= x < A[e+1 .. len(A)-1] AND b <= e+1

m = (b+e) // 2

if A[m] <= x :

b = m + 1

else :

e = m - 1

return b-1

The loop invariant should be true even after the last iteration of the loop (which explains

b <= e+1), which gives the claim:

P (i) : If the precondition is satis�ed and there are i iterations of the loop,

0 � bi � ei + 1 � n and A[0::bi � 1] � x < A[ei + 1::n� 1]

Claim: 8i 2 N; P (i)

Proof (mathematical induction on i):

Base case: When i = 0, I examine the claim before the loop iterates (i.e., after its 0th iterations).

The initial assignment statements set b0 = 0 � ei + 1 = n, since A is a non-empty array and

n � 1, so this part of P (0) holds. Also A[0::b0 � 1], and A[e0 + 1::n � 1] are both empty

subarrays, so the P (0) holds vacuously for them.

5

Induction step: Assume i 2 N, P (i), and that there is an (i+ 1)th iteration of the loop.

Since there is another iteration of the loop, I know that bi � ei, so m = (bi + ei)==2 has

m � 2bi==2 = bi and m � 2ei==2 = ei. When the if statement is evaluated, the program

takes one of two paths:

Case 1: If A[m] � x, the the program executes bi+1 = m+ 1, and ei+1 = ei, so

0 � bi # by IH

� m � m+ 1 = bi+1 # by construction of m

� ei + 1 = ei+1 + 1 # by construction of m

� n # by IH

So 0 � bi+1 � ei+1 + 1 � n. From the IH, 0 � bi, and since array A is sorted and

A[m = bi+1 � 1] � x, we have A[0::bi+1 � 1] � x, and, from the IH and ei+1 = ei, we

have x < A[ei+1::n� 1].

Case 2: If A[m] > x the the program executes ei+1 = m� 1, and bi+1 = bi, so

0 � bi = bi+1 # by IH

� m = ei+1 + 1 # by construction

� ei � n # by IH

So 0 � bi+1 � ni+1 + 1 � n. From the IH and the fact that bi+1 = bi, we have

A[0::bi+1�1] � x. Since A is sorted and A[m = ei+1+1] > x we have A[ei+1+1::n�1] > x.

In both cases, P (i) implies P (i+ 1), so for any i 2 N, P (i)) P (i+ 1).

I conclude 8i 2 N; P (i), by mathematical induction.

Partial correctness: I assume the precondition is satis�ed and that, once executed, the loop even-

tually terminates.

Since the look terminates, I'll assume that the loop condition is violated after some k 2 N

iterations. By the loop invariant P (k), I have

0 � bk � ek + 1 � n

. . . and since the loop condition fails, bk > ek. Since b and e are integers (loop indices, and we

perform integer arithmetic on them), I have bk > ek and bk 6> ek+1 implies bk = ek+1:, and the

code returns p = bk � 1 = ek. By the loop invariant P (k), I also have:

A[0::p = bk � 1] � x < A[p+ 1 = ek + 1::n� 1]

Also, by the loop invariant P (k), I know 0 � bk � ek + 1 � n, so p = bk � 1 � 0 � 1 == 1, and

also p = ek � n� 1. So, given termination, the postcondition follows from the precondition.

Termination: Consider the sequence hei + 1 � bii, where ei and bi are the values of e and b after

i loop iterations. Since e and b are initialized to n � 1 and 0 initially, and have only integer

math performed on them, the sequence is clearly an integer. Furthermore, the loop invariant

P (i) guarantees that ei + 1 � bi, so the terms of the sequence are non-negative, hence this is a

sequence of natural numbers.

Assume that an (i+ 1)th iteration of the loop occurs. There are two cases:

Case 1: If A[m] � x, then bi+1 = m+ 1, and ei+1 = ei,

ei+1 + 1� bi+1 = ei �m� 1 < ei � bi # since m � bi

So, in this case hei+1 + 1� bi+1i is strictly less than hei + 1� bii.

6

Case 2: If A[m] > x, then bi+1 = bi and ei+1 = m� 1, so

ei+1 + 1� bi+1 = m� bi < ei + 1� bi # sincem � ei

So, in this case hei+1 + 1� bi+1i is strictly less than hei + 1� bii.

In both cases, the sequence hei+1�bii is strictly decreasing. A decreasing sequence in N is �nite,

so there are �nitely many loop iterations, and the loop must terminate.

Correctness: I have shown that the loop terminates, and that given the precondition, execution,

and termination, the post condition follows. So, the algorithm is correct with respect to its

precondition and postcondition.

7

