CSC236, Fall 2012 Assignment 3 sample solution

1. Let $L=\left\{x \in\{0,1\}^{*} \mid\right.$ fourth-last symbol in x is 0$\}$. Prove that any DFSA that accepts L has at least 16 states. Hint: Consider the sixteen binary strings of length four, and what happens if two of them drive a DFSA to the same state.

Proof (by contradiction): Assume there is a DFSA M, with start state s and fewer than 16 states, that accepts L.
Then each of the sixteen binary strings of length four drives M to its respective state, and by the pigeonhole principle, there will be at least one pair of strings that drive M to the same state, let's call it state q. Denote this pair of strings by their bits as $b_{0} b_{1} b_{2} b_{3}$ and $b_{0}^{\prime} b_{1}^{\prime} b_{2}^{\prime} b_{3}^{\prime}$, and note that (being different strings) there is some $0 \leq i \leq 3$ with $b_{i} \neq b_{i}^{\prime}$. Without loss of generality, assume that $b_{i}=0$ and $b_{i}^{\prime}=1$.
Now consider the new pair of strings produced by appending a suffix x consisting of i 0s to each string. By construction $b_{0} b_{1} b_{2} b_{3} x$ has a zero in the fourth-last place, and should be accepted by M, whereas $b_{0}^{\prime} b_{1}^{\prime} b_{2}^{\prime} b_{3}^{\prime} x$ has a 1 in the fourth-last place and should be rejected. However, by our assumption, both strings drive M to state q, that is $\delta^{*}\left(s, b_{0}^{\prime} b_{1}^{\prime} b_{2}^{\prime} b_{3}^{\prime}\right)=\delta^{*}\left(s, b_{0} b_{1} b_{2} b_{3}\right)=q$, so

$$
\delta^{*}\left(s, b_{0} b_{1} b_{2} b_{3} x\right)=\delta^{*}(q, x)=\delta^{*}\left(s, b_{0}^{\prime} b_{1}^{\prime} b_{2}^{\prime} b_{3}^{\prime} x\right)=q^{\prime}
$$

However, q^{\prime} must be either an accepting or non-accepting state, so either $b_{0} b_{1} b_{2} b_{3} x$ or $b_{0}^{\prime} b_{1}^{\prime} b_{2}^{\prime} b_{3}^{\prime} x$ have driven M to the wrong state. Contradiction

Since I assumed there was a DFSA M that accepted L with fewer than 16 states, and then derived a contradiction, the assumption is false, and any DFSA that accepts L must have at least 16 states.
2. Prove that the following terminates, given the precondition $x \in \mathbb{N}$:

```
y = x * x
while not y == 0 :
    x = x - 1
    y = y - 2* x - 1
```

Hint: Trace through the code for a few small values of x, then derive (and prove) a loop invariant that helps prove termination.

Solution: Experimenting with $x \in\{0,1,2,3\}$ I see that at the end of each loop iteration $y=x^{2}$, and that x is steadily decreasing. I need to exhibit a decreasing sequence in \mathbb{N}, and $\left\langle x_{i}\right\rangle$ seems appropriate, provided I can show that $x_{i} \geq 0$. This suggests the following loop invariant:

$$
y_{i}=x_{i}^{2} \text { and } x_{i} \in \mathbb{N}
$$

Of course, the claim only makes sense if the loop iterates i times, so I have:
$P(i)$: If the precondition is satisfied, and there are at least i iterations of the loop, then $y_{i}=x_{i}^{2}$ and $x_{i} \in \mathbb{N}$.
Claim: $\forall i \in \mathbb{N}, P(i)$. I prove this by mathematical induction on i
Base case, $i=0$: If there have been at least 0 iterations of the loop, then by the precondition $x_{0} \in \mathbb{N}$, and $y_{0}=x_{0}^{2}$ by the assignment statement.
Induction step: Assume $i \in \mathbb{N}$, that $P(i)$, and there is an $(i+1)$ th iteration of the loop.
Then, by the IH, $y_{i}=x_{i}^{2}$, and (since the loop condition was satisfied in order to begin iteration $i+1) x_{i}^{2} \neq 0$, so $x_{i} \neq 0$.
By the IH, $x_{i} \in \mathbb{N}$, so (since it's not 0) $x_{i} \geq 1$.
By the first assignment statement within the loop, $x_{i+1}=x_{i}-1 \geq 1-1$, so x_{i+1} is an integer no smaller than 0 , in other words a natural number.
By the second assignment statement, since $x_{i+1}=x_{i}-1$, and by the IH $y_{i}=x_{i}^{2}$:

$$
y_{i+1}=y_{i}-2 x_{i+1}-1=x_{i}^{2}-2\left(x_{i}-1\right)-1=x_{i+1}^{2}
$$

Thus $P(i+1)$ holds.
Since for a generic $i \in \mathbb{N} P(i)$ implies $P(i+1)$, then $\forall i \in \mathbb{N}, P(i) \Rightarrow P(i+1)$.
I conclude $\forall i \in \mathbb{N}, P(i)$, by mathematical induction.
Claim: $\left\langle x_{i}\right\rangle$, the sequence of values of x after the loop iterates i times, is a decreasing sequence in \mathbb{N}.
Proof: The loop invariant establishes that $\left\langle x_{i}\right\rangle$ is a sequence in \mathbb{N}, it remains to prove that it is decreasing. If there is an $(i+1)$ th iteration of the loop, then $x_{i+1}=x_{i}-1$, so $x_{i}>x_{i+1}$. Thus $\left\langle x_{i}\right\rangle$ is a decreasing sequence in \mathbb{N}.
By the Well-Ordering Principle, any decreasing sequence in \mathbb{N} is finite, so there are finitely many elements in $\left\langle x_{i}\right\rangle$, hence finite iterations of the loop. In other words, the loop terminates.
3. Design a DFSA that accepts the language of binary strings over $\{0,1\}$ that have a multiple of 4 s. Devise, and prove a state invariant, and explain how it shows that your DFSA accepts this language.

Solution: I'll need at least four states, one for the remainder of the number of 1 s after division by four. My accepting state will be where my machine is driven by strings where the number of ones has remainder 0 after division by four. I'll label each state by the appropriate remainder, and have state 0 be the start state (since ε has 0 ones, a multiple of 4).

I need to prove the following state invariant to convince you that this machine accepts the language L. My predicate is $P(s)$:

$$
P(s): \delta^{*}\left(q_{0}, s\right)= \begin{cases}q_{0} & \text { if the number of } 1 \mathrm{~s} \text { in } s \text { has remainder } 0 \text { when divided by } 4 \\ q_{1} & \text { if the number of } 1 \mathrm{~s} \text { in } s \text { has remainder } 1 \text { when divided by } 4 \\ q_{2} & \text { if the number of } 1 \mathrm{~s} \text { in } s \text { has remainder } 2 \text { when divided by } 4 \\ q_{3} & \text { if the number of } 1 \mathrm{~s} \text { in } s \text { has remainder } 3 \text { when divided by } 4\end{cases}
$$

I prove that $\forall s \in\{0,1\}^{*}, P(s)$.
Proof (structural induction on s): s is either ε or $s=y a$, where $y \in\{0,1\}^{*}$ and $a \in\{0,1\}$. I consider each case.
Case $s=\varepsilon$: In this case $\delta^{*}\left(q_{0}, s\right)=q_{0}$ by definition of extended transition function δ^{*}, and $P(\varepsilon)$ holds. Note that the claims about $|\varepsilon|$ having remainders $1-3$ are vacuously true.
Case $s=y a$ where $y \in\{0,1\}^{*}$ and $a \in\{0,1\}: \mathrm{I}$ assume $P(y)$, and then use this to prove that $P(s)$ follows. There are two subcases, according to whether $a=0$ or $a=1$.

Case $a=0$: In this case the number of 1 s in y is unchanged by appending 0 , so

$$
\delta^{*}\left(q_{0}, s\right)=\delta^{*}\left(q_{0}, y 0\right)=\delta\left(\delta^{*}\left(q_{0}, y\right), 0\right)
$$

by $P(y)= \begin{cases}\delta\left(q_{0}, 0\right) & \text { if the number of } 1 \mathrm{~s} \text { in } y \text { has remainder } 0 \text { when divided by } 4 \\ \delta\left(q_{1}, 0\right) & \text { if the number of } 1 \mathrm{~s} \text { in } y \text { has remainder } 1 \text { when divided by } 4 \\ \delta\left(q_{2}, 0\right) & \text { if the number of } 1 \mathrm{~s} \text { in } y \text { has remainder } 2 \text { when divided by } 4 \\ \delta\left(q_{3}, 0\right) & \text { if the number of } 1 \mathrm{~s} \text { in } y \text { has remainder } 3 \text { when divided by } 4\end{cases}$

$$
= \begin{cases}q_{0} & \text { if the number of } 1 \mathrm{~s} \text { in } s=y 0 \text { has remainder } 0 \text { when divided by } 4 \\ q_{1} & \text { if the number of } 1 \mathrm{~s} \text { in } s=y 0 \text { has remainder } 1 \text { when divided by } 4 \\ q_{2} & \text { if the number of } 1 \mathrm{~s} \text { in } s=y 0 \text { has remainder } 2 \text { when divided by } 4 \\ q_{3} & \text { if the number of } 1 \mathrm{~s} \text { in } s=y 0 \text { has remainder } 3 \text { when divided by } 4\end{cases}
$$

So, $P(s)$ follows in this case.
Case $a=1$: In this case the number of 1 s in y is increased by 1 upon appending 1 , so

$$
\begin{aligned}
\delta^{*}\left(q_{0}, s\right) & =\delta^{*}\left(q_{0}, y 1\right)=\delta\left(\delta^{*}\left(q_{0}, y\right), 1\right) \\
\text { by } P(y) & = \begin{cases}\delta\left(q_{0}, 1\right) & \text { if the number of } 1 \mathrm{~s} \text { in } y \text { has remainder } 0 \text { when divided by } 4 \\
\delta\left(q_{1}, 1\right) & \text { if the number of } 1 \mathrm{~s} \text { in } y \text { has remainder } 1 \text { when divided by } 4 \\
\delta\left(q_{2}, 1\right) & \text { if the number of } 1 \mathrm{~s} \text { in } y \text { has remainder } 2 \text { when divided by } 4 \\
\delta\left(q_{3}, 1\right) & \text { if the number of } 1 \mathrm{~s} \text { in } y \text { has remainder } 3 \text { when divided by } 4\end{cases} \\
& = \begin{cases}q_{1} & \text { if the number of } 1 \mathrm{~s} \text { in } s=y 1 \text { has remainder } 1 \text { when divided by } 4 \\
q_{2} & \text { if the number of } 1 \mathrm{~s} \text { in } s=y 1 \text { has remainder } 2 \text { when divided by } 4 \\
q_{3} & \text { if the number of } 1 \mathrm{~s} \text { in } s=y 1 \text { has remainder } 3 \text { when divided by } 4 \\
q_{0} & \text { if the number of } 1 \mathrm{~s} \text { in } s=y 1 \text { has remainder } 0 \text { when divided by } 4\end{cases}
\end{aligned}
$$

So, $P(s)$ follows in this case (the branches of the invariant are simply permuted).
So, in both possible cases $P(s)$ follows.
I conclude, by structural induction, that $\forall s \in\{0,1\}^{*}, P(s)$.
Since all four possible states are listed in the invariant, I know that $P(s)$ means that s drives the machine to state q_{0} if, and only if, s has a multiple of 41 s . So this machine accepts the language.
4. Design an iterative binary search algorithm that is correct with respect to the following precondition/postcondition pair:

Precondition: A has elements that are comparable with $x,|A|=n>0$, and A is sorted in non-decreasing order.

Postcondition: binSearch(x, A) terminates and returns an index p that satisfies:

$$
\begin{aligned}
A[0 \ldots p] & \leq x<A[p+1 \ldots n-1] \\
-1 & \leq p \leq n-1
\end{aligned}
$$

Prove that if the precondition is satisfied, then your algorithm terminates and satisfies the postcondition. Hint: Use the approach from lecture (no need to provide the pictures) where you develop a loop invariant as you write the code.

Solution: Initially the precondition guarantees a sorted, non-empty array A, and I know nothing about how any of the elements compare to x. After i loop iterations, I'd like to reduce the scope of this ignorance to the subarray $A[b \ldots e]$, for indices b and e, in other words

$$
A\left[0 \ldots b_{i}-1\right] \leq x<A\left[e_{i}+1 \ldots n-1\right]
$$

I can certainly make this initially true if I initialize with
$\mathrm{b}=0$
$\mathrm{e}=\mathrm{n}-1$
There's still work to do so long as the subarray A [b . . . e] isn't empty, so my loop condition is

```
while b <= e
```

Within the loop I should cut the remaining search space in half, so I choose m midway through

```
m = (b+e) // 2
```

Then I determine whether the midpoint belongs to the portion to the left of b, or the portion to the right of e :

```
if A[m] <= x :
    b = m+1
else :
    e = m - 1
```

After the last iteration we'll return $\mathrm{p}=\mathrm{b}-1$, so our completed code looks like:

```
binSearch(A, x) # A non-empty, sorted non-decreasing, comparable to x
    b = 0
    e = len(A) - 1
    while b <= e : # A[0.. b-1] <= x < A[e+1 .. len(A)-1] AND b <= e+1
        m = (b+e) // 2
        if A[m] <= x :
            b = m + 1
        else :
            e = m - 1
    return b-1
```

The loop invariant should be true even after the last iteration of the loop (which explains b <= e+1), which gives the claim:

$$
\begin{aligned}
& P(i): \text { If the precondition is satisfied and there are } i \text { iterations of the loop, } \\
& 0 \leq b_{i} \leq e_{i}+1 \leq n \text { and } A\left[0 . . b_{i}-1\right] \leq x<A\left[e_{i}+1 . . n-1\right]
\end{aligned}
$$

Claim: $\forall i \in \mathbb{N}, P(i)$

Proof (mathematical induction on i):

Base case: When $i=0$, I examine the claim before the loop iterates (i.e., after its 0th iterations). The initial assignment statements set $b_{0}=0 \leq e_{i}+1=n$, since A is a non-empty array and $n \geq 1$, so this part of $P(0)$ holds. Also $A\left[0 . . b_{0}-1\right]$, and $A\left[e_{0}+1 . . n-1\right]$ are both empty subarrays, so the $P(0)$ holds vacuously for them.

Induction step: Assume $i \in \mathbb{N}, P(i)$, and that there is an $(i+1)$ th iteration of the loop.
Since there is another iteration of the loop, I know that $b_{i} \leq e_{i}$, so $m=\left(b_{i}+e_{i}\right) / / 2$ has $m \geq 2 b_{i} / / 2=b_{i}$ and $m \leq 2 e_{i} / / 2=e_{i}$. When the if statement is evaluated, the program takes one of two paths:
Case 1: If $A[m] \leq x$, the the program executes $b_{i+1}=m+1$, and $e_{i+1}=e_{i}$, so

$$
\begin{array}{rlr}
0 & \leq b_{i} \quad \text { \# by IH } \\
& \leq m \leq m+1=b_{i+1} \quad \text { \# by construction of } m \\
& \leq e_{i}+1=e_{i+1}+1 \quad \text { \# by construction of } m \\
& \leq n \quad \text { \# by IH }
\end{array}
$$

So $0 \leq b_{i+1} \leq e_{i+1}+1 \leq n$. From the $\mathrm{IH}, 0 \leq b_{i}$, and since array A is sorted and $A\left[m=b_{i+1}-1\right] \leq x$, we have $A\left[0 . b_{i+1}-1\right] \leq x$, and, from the IH and $e_{i+1}=e_{i}$, we have $x<A\left[e_{i+1} . . n-1\right]$.
Case 2: If $A[m]>x$ the the program executes $e_{i+1}=m-1$, and $b_{i+1}=b_{i}$, so

$$
\begin{aligned}
0 & \leq b_{i}=b_{i+1} \quad \text { \# by IH } \\
& \leq m=e_{i+1}+1 \quad \text { \# by construction } \\
& \leq e_{i} \leq n \quad \text { \# by IH }
\end{aligned}
$$

So $0 \leq b_{i+1} \leq n_{i+1}+1 \leq n$. From the IH and the fact that $b_{i+1}=b_{i}$, we have $A\left[0 . . b_{i+1}-1\right] \leq x$. Since A is sorted and $A\left[m=e_{i+1}+1\right]>x$ we have $A\left[e_{i+1}+1 . . n-1\right]>x$. In both cases, $P(i)$ implies $P(i+1)$, so for any $i \in \mathbb{N}, P(i) \Rightarrow P(i+1)$.
I conclude $\forall i \in \mathbb{N}, P(i)$, by mathematical induction.
Partial correctness: I assume the precondition is satisfied and that, once executed, the loop eventually terminates.
Since the look terminates, I'll assume that the loop condition is violated after some $k \in \mathbb{N}$ iterations. By the loop invariant $P(k)$, I have

$$
0 \leq b_{k} \leq e_{k}+1 \leq n
$$

\ldots and since the loop condition fails, $b_{k}>e_{k}$. Since b and e are integers (loop indices, and we perform integer arithmetic on them), I have $b_{k}>e_{k}$ and $b_{k} \ngtr e_{k}+1$ implies $b_{k}=e_{k}+1$., and the code returns $p=b_{k}-1=e_{k}$. By the loop invariant $P(k)$, I also have:

$$
A\left[0 . . p=b_{k}-1\right] \leq x<A\left[p+1=e_{k}+1 . . n-1\right]
$$

Also, by the loop invariant $P(k)$, I know $0 \leq b_{k} \leq e_{k}+1 \leq n$, so $p=b_{k}-1 \geq 0-1==1$, and also $p=e_{k} \leq n-1$. So, given termination, the postcondition follows from the precondition.
Termination: Consider the sequence $\left\langle e_{i}+1-b_{i}\right\rangle$, where e_{i} and b_{i} are the values of e and b after i loop iterations. Since e and b are initialized to $n-1$ and 0 initially, and have only integer math performed on them, the sequence is clearly an integer. Furthermore, the loop invariant $P(i)$ guarantees that $e_{i}+1 \geq b_{i}$, so the terms of the sequence are non-negative, hence this is a sequence of natural numbers.
Assume that an $(i+1)$ th iteration of the loop occurs. There are two cases:
Case 1: If $A[m] \leq x$, then $b_{i+1}=m+1$, and $e_{i+1}=e_{i}$,

$$
e_{i+1}+1-b_{i+1}=e_{i}-m-1<e_{i}-b_{i} \quad \# \text { since } m \geq b_{i}
$$

So, in this case $\left\langle e_{i+1}+1-b_{i+1}\right\rangle$ is strictly less than $\left\langle e_{i}+1-b_{i}\right\rangle$.

Case 2: If $A[m]>x$, then $b_{i+1}=b_{i}$ and $e_{i+1}=m-1$, so

$$
e_{i+1}+1-b_{i+1}=m-b_{i}<e_{i}+1-b_{i} \quad \# \text { since } m \leq e_{i}
$$

So, in this case $\left\langle e_{i+1}+1-b_{i+1}\right\rangle$ is strictly less than $\left\langle e_{i}+1-b_{i}\right\rangle$.
In both cases, the sequence $\left\langle e_{i}+1-b_{i}\right\rangle$ is strictly decreasing. A decreasing sequence in \mathbb{N} is finite, so there are finitely many loop iterations, and the loop must terminate.
Correctness: I have shown that the loop terminates, and that given the precondition, execution, and termination, the post condition follows. So, the algorithm is correct with respect to its precondition and postcondition.

