CSC236, Fall 2012
 Assignment 2
 Sample solution

1. Odd Maximal Contiguous Ones Free Strings (OMCOFs) are binary strings that contain no maximal contiguous substring ${ }^{1}$ of 1 s that is of odd length. For example 0110 is an OMCOFS because the only maximal substring of 1 s it contains is 11 , and that is not of odd length. On the other hand 10111 is not an OMCOFS because it contains 1 and 111 - both maximal contiguous substrings of 1 s , and both of odd length.
Define $H(n)$ as the number of omcofs in the set of binary strings of length n. For example, $H(4)=5$, since we have the following binary strings (and no others) of length 4 that are free of maximal contiguous substrings of odd length:

$$
\begin{array}{lllll}
0000 & 1100 & 0110 & 0011 & 1111
\end{array}
$$

Develop a recurrence (a recursive definition) for $H(n)$, and explain why it correctly counts the number of OMCOFS of length n. Unwind (use repeated substitution) your recurrence and find a closed form for $H(n)$. Prove that your closed form is equal to the recursive definition of $H(n)$ using an appropriate flavour of induction.

Solution: There is exactly one binary string of length 0 , the empty string, which contains no maximal contiguous substring of 1 s of odd length, so $H(0)=1$. The only binary string of length 1 that contains no maximal contiguous substrings of odd length is the string 0 , so $H(1)=1$. For $n>1$, the $O M C O F S s$ of length n can be partitioned into those that end in 0 and those that end in 1. Those that end in 0 are in $1-1$ correspondence with the OMCOFSs of length $n-1$ (by appending or removing a 0). An OMCOFS of length n that ends in 1 certainly can't end in 01, so these must end in 11. Thus, the OMCOFSs of length n that end in 1 are in $1-1$ correspondence with the OMCOFSs of length $n-2$ (by appending or removing 11). So the following recurrence counts the OMCOFSs of length n :

$$
H(n)= \begin{cases}1 & \text { if } n<2 \\ H(n-2)+H(n-1) & \text { if } n>1\end{cases}
$$

The form of the recurrence makes it seem likely that H is Fibonacci-esque, and I can firm up this conjecture by repeated substitution. Assuming that n is sufficiently greater than 1 to apply the

[^0]second branch of the recurrence a few times, I explore the pattern:
\[

$$
\begin{aligned}
H(n) & =H(n-1)+H(n-2)=H(n-3)+H(n-2)+H(n-2) \\
& =2 H(n-2)+H(n-3)=2(H(n-4)+H(n-3))+H(n-3) \\
& =3 H(n-3)+2 H(n-4)=3(H(n-5)+H(n-4))+2 H(n-4) \\
& =5 H(n-4)+3 H(n-5) \\
& \vdots \\
& =F(i) H(n-i+1)+F(i-1) H(n-i) \\
& \quad \# \operatorname{Fib}(i) \equiv F(i) \quad 1 \leq i \leq n \\
& \\
& \\
& \\
& =F(n) H(1)+F(n-1) H(0) \quad \# \quad i=n \\
& F(n)+F(n-1)=F(n+1) \quad
\end{aligned}
$$
\]

I know a closed form for $F(n+1)$, so now I set out to prove:
Claim: $H(n)=\left(\phi^{n+1}-\hat{\phi}^{n+1}\right) / \sqrt{5}$, where $\phi=\frac{1+\sqrt{5}}{2}$ and $\hat{\phi}=\frac{1-\sqrt{5}}{2}$ are the solutions to the equation $x^{2}=x+1$.
Proof, by complete induction on n :
Induction step: Assume $n \in \mathbb{N}$ and that $H(k)=\left(\phi^{k+1}-\hat{\phi}^{k+1}\right) / \sqrt{5}$ for every natural number $k, 0 \leq k<$ n.

Case $n<2$: In these cases:

$$
\begin{aligned}
H(0) & =1=\frac{1+\sqrt{5}-1+\sqrt{5}}{2 \sqrt{5}}=\frac{\phi^{1}-\hat{\phi}^{1}}{\sqrt{5}} \\
H(1) & =1=\frac{1+\sqrt{5}+2-1+\sqrt{5}-2}{2 \sqrt{5}}=\frac{(\phi+1)-(\hat{\phi}+1)}{\sqrt{5}}=\frac{\phi^{2}-\hat{\phi}^{2}}{\sqrt{5}} \\
& =\quad \# \phi^{2}=\phi+1 \text { and } \hat{\phi}^{2}=\hat{\phi}+1
\end{aligned}
$$

So the claim is verified for $H(0)$ and $H(1)$ directly.
Case $n>1$: In this case:

$$
\begin{aligned}
H(n) & =H(n-1)+H(n-2) \quad \text { \#by definition of } H(n), n>1 \\
& =\frac{\phi^{n}-\hat{\phi}^{n}}{\sqrt{5}}+\frac{\phi^{n-1}-\hat{\phi}^{n-1}}{\sqrt{5}} \quad \# \text { by assumption, } 0 \leq n-2, n-1<n \\
& =\frac{\left(\phi^{n}+\phi^{n-1}\right)-\left(\hat{\phi}^{n}+\hat{\phi}^{n-1}\right)}{\sqrt{5}}=\frac{\phi^{n-1}(\phi+1)-\hat{\phi}^{n-1}(\hat{\phi}+1)}{\sqrt{5}} \\
& =\frac{\phi^{n-1} \phi^{2}-\hat{\phi}^{n-1} \hat{\phi}^{2}}{\sqrt{5}}=\frac{\phi^{n+1}-\hat{\phi}^{n+1}}{\sqrt{5}} \\
& =\quad \# \phi^{2}=\phi+1 \quad \text { and } \hat{\phi}^{2}=\hat{\phi}+1
\end{aligned}
$$

So, the claim holds in this case also.
Thus, if the claim is true of $H(k)$ for all natural numbers $0 \leq k<n$, it is also true of $H(n)$. I conclude that $\forall n \in \mathbb{N}, H(n)=\frac{\phi^{n+1}-\hat{\phi}^{n+1}}{\sqrt{5}}$, by complete induction.
2. In class we developed the following recurrence to express the time complexity of binary search:

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ 1+\max \{T(\lceil n / 2\rceil), T(\lfloor n / 2\rfloor)\} & \text { if } n>1\end{cases}
$$

You have already found a closed form for $T(n)$ when n is a power of 2 , using unwinding (repeated substitution). Now emulate the proof from the Course Notes, Lemma 3.6, page 84 that the recurrence for MergeSort is non-decreasing, to prove that our T is also non-decreasing. Use this fact, and no further induction, to prove that $T \in \theta(\lg n)$.

Solution: The first step is to show that T is nondecreasing. I define a predicate, slightly modified from Lemma $3.6(m \leq n$, rather than $m<n)$

$$
P(n): \forall m \in \mathbb{N}, m \leq n \Rightarrow T(m) \leq T(n)
$$

I claim $\forall n \in \mathbb{N}^{+}, P(n)$

Proof, by complete induction:

Induction step: Assume that n is an arbitrary positive natural number, and that for every natural number $1 \leq k<n P(n)$ is true. I consider cases where $n<3$ and $n>2$.
Case $1 \leq n<3: ~ P(1)$ is vacuously true, since there are no positive integers less than 1 . To test $P(2)$ I have to evaluate:

$$
T(1)=1 \leq T(2)=1+1=2 \quad \# \quad \text { by definition of } T
$$

In both cases, $P(n)$ holds.
Case $n>2$: By Lemma 3.3 and $n>1$ I know that $1 \leq\lfloor n / 2\rfloor \leq\lfloor n / 2\rfloor$ and $1 \leq n-1<n$, so by assumption $P(\lfloor n / 2\rfloor), P(\rceil n / 2\rceil)$, and $P(n-1)$ all hold. Also, $1 \leq\lceil(n-1) / 2\rceil,\lfloor(n-1) / 2\rfloor$, since $n \geq 3$. And, since $P(n-1)$ is assumed, by transitivity of \leq I need only show that $T(n) \geq T(n-1)$. I have

$$
\begin{aligned}
T(n-1)= & 1+\max \{T(\lceil(n-1) / 2\rceil), T(\lfloor(n-1) / 2\rfloor)\} \quad \text { \# by IH for } n-1 \\
\leq & 1+\max \{T(\lceil n / 2\rceil, T(\lfloor n / 2\rfloor)\} \\
& \quad \# \text { by IH for }\lceil n / 2\rceil,\lfloor n / 2\rfloor \text { and nondecreasing property of floor, ceiling } \\
& =T(n)
\end{aligned}
$$

So $P(n)$ holds in this case.
So, $\forall n \in \mathbb{N}^{+}$, if $P(k)$ holds for $1 \leq k<n$, then $P(n)$ holds also.
I conclude that $\forall n \in \mathbb{N}, P(n)$, by complete induction.
Prove that $T \in \theta(\lg n)$: I assume, without proof (done in class) that if n is a power of 2 , then $T(n)=$ $1+\lg n$. For convenience, I define $\hat{n}=2^{\lceil\lg n\rceil}$, the "next" power of 2 no smaller than n. Since $\lceil x\rceil<x+1$, I know that $\hat{n} / 2<n \leq \hat{n}$, and both \hat{n} and $\hat{n} / 2$ are powers of 2 , provided $n \geq 2$.. I use these to prove:

$$
\exists c_{1}, c_{2} \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow c_{1} \lg n \leq T(n) \leq c_{2} \lg n
$$

In other words, I prove that $T \in \theta(\lg n)$.

Pick $c_{1}=1 / 2, c_{2}=3$, and $B=4$. Then $c-1, c_{2} \in \mathbb{R}^{1}$ and $B \in \mathbb{N}$. Assume $n \geq B$, then

$$
\begin{aligned}
T(n) & \leq T(\hat{n}) \quad \# \quad T \text { nondecreasing and } n \leq \hat{n} \\
& =1+\lg \hat{n} \quad \# \quad \hat{n} \text { is a power of } 2, \lg \text { is nondecreasing } \\
& <1+\lg (2 n) \quad \# \quad \hat{n} / 2<n \Rightarrow \hat{n}<2 n \\
& =1+\lg n+\lg 2=\lg 2+2 \leq \lg n+2 \lg n \quad \# \quad n \geq B \geq 2 \\
& =3 \lg n=c \lg n
\end{aligned}
$$

...also

$$
\begin{aligned}
T(n) & \geq T(\hat{n} / 2) \quad \text { \# } \quad T \text { nondecreasing and } n>\hat{n} / 2 \\
& =1+\lg \hat{n} / 2 \quad \text { \# } \hat{n} / 2 \text { is a power of } 2 \\
& \geq 1+\lg n / 4 \quad \text { \# } \hat{n}>n / 2 \\
& =1+\lg n-\lg 4=\lg n-1=\frac{1}{2} \lg n+\frac{1}{2} \lg n-1 \\
& \geq \frac{1}{2} \lg n \quad \# \quad n \geq B=4 \Rightarrow \lg n \geq 2 \\
& =c_{1} \lg n
\end{aligned}
$$

Thus,

$$
\exists c_{1}, c_{2} \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow c_{1} \lg n \leq T(n) \leq c_{2} \lg n
$$

since $c_{1}=1 / 2, c_{2}=3$, and $B=4$ satisfy the claim.

[^0]: ${ }^{1}$ Maximal in the sense that every larger substring that contains them has at least one 0

