
CSC236, Fall 2012

Assignment 2

Sample solution

1. Odd Maximal Contiguous Ones Free Strings (omcofs) are binary strings that contain no maximal

contiguous substring1of 1s that is of odd length. For example 0110 is an omcofs because the only

maximal substring of 1s it contains is 11, and that is not of odd length. On the other hand 10111 is

not an omcofs because it contains 1 and 111 | both maximal contiguous substrings of 1s, and both

of odd length.

De�ne H(n) as the number of omcofs in the set of binary strings of length n. For example, H(4) = 5,

since we have the following binary strings (and no others) of length 4 that are free of maximal contiguous

substrings of odd length:

0000 1100 0110 0011 1111

Develop a recurrence (a recursive de�nition) for H(n), and explain why it correctly counts the number

of omcofs of length n. Unwind (use repeated substitution) your recurrence and �nd a closed form for

H(n). Prove that your closed form is equal to the recursive de�nition of H(n) using an appropriate

avour of induction.

Solution: There is exactly one binary string of length 0, the empty string, which contains no maximal

contiguous substring of 1s of odd length, so H(0) = 1. The only binary string of length 1 that

contains no maximal contiguous substrings of odd length is the string 0, so H(1) = 1. For n > 1,

the OMCOFSs of length n can be partitioned into those that end in 0 and those that end in 1.

Those that end in 0 are in 1{1 correspondence with the OMCOFSs of length n�1 (by appending

or removing a 0). An OMCOFS of length n that ends in 1 certainly can't end in 01, so these

must end in 11. Thus, the OMCOFSs of length n that end in 1 are in 1{1 correspondence with

the OMCOFSs of length n�2 (by appending or removing 11). So the following recurrence counts

the OMCOFSs of length n:

H(n) =

(
1 if n < 2

H(n� 2) +H(n� 1) if n > 1

The form of the recurrence makes it seem likely that H is Fibonacci-esque, and I can �rm up this

conjecture by repeated substitution. Assuming that n is su�ciently greater than 1 to apply the

1Maximal in the sense that every larger substring that contains them has at least one 0
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second branch of the recurrence a few times, I explore the pattern:

H(n) = H(n� 1) +H(n� 2) = H(n� 3) +H(n� 2) +H(n� 2)

= 2H(n� 2) +H(n� 3) = 2 (H(n� 4) +H(n� 3)) +H(n� 3)

= 3H(n� 3) + 2H(n� 4) = 3 (H(n� 5) +H(n� 4)) + 2H(n� 4)

= 5H(n� 4) + 3H(n� 5)

...

= F (i)H(n� i+ 1) + F (i� 1)H(n� i)

# Fib(i) � F (i) 1 � i � n

...

= F (n)H(1) + F (n� 1)H(0) # i = n

= F (n) + F (n� 1) = F (n+ 1)

I know a closed form for F (n+ 1), so now I set out to prove:

Claim: H(n) = (�n+1 � �̂n+1)=
p
5, where � = 1+

p
5

2
and �̂ = 1�p5

2
are the solutions to the equation

x2 = x+ 1.

Proof, by complete induction on n:

Induction step: Assume n 2 N and that H(k) = (�k+1� �̂k+1)=
p
5 for every natural number k, 0 � k <

n.

Case n < 2: In these cases:

H(0) = 1 =
1 +

p
5� 1 +

p
5

2
p
5

=
�1 � �̂1p

5

H(1) = 1 =
1 +

p
5 + 2� 1 +

p
5� 2

2
p
5

=
(�+ 1)� (�̂+ 1)p

5
=
�2 � �̂2p

5

= # �2 = �+ 1 and �̂2 = �̂+ 1

So the claim is veri�ed for H(0) and H(1) directly.

Case n > 1: In this case:

H(n) = H(n� 1) +H(n� 2) #by de�nition of H(n); n > 1

=
�n � �̂np

5
+
�n�1 � �̂n�1p

5
# by assumption, 0 � n� 2; n� 1 < n

=
(�n + �n�1)� (�̂n + �̂n�1)p

5
=
�n�1(�+ 1)� �̂n�1(�̂+ 1)p

5

=
�n�1�2 � �̂n�1�̂2p

5
=
�n+1 � �̂n+1

p
5

= # �2 = �+ 1 and �̂2 = �̂+ 1

So, the claim holds in this case also.

Thus, if the claim is true of H(k) for all natural numbers 0 � k < n, it is also true of H(n).

I conclude that 8n 2 N; H(n) = �n+1��̂n+1p
5

, by complete induction.
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2. In class we developed the following recurrence to express the time complexity of binary search:

T (n) =

(
1 if n = 1

1 +maxfT (dn=2e); T (bn=2c)g if n > 1

You have already found a closed form for T (n) when n is a power of 2, using unwinding (repeated

substitution). Now emulate the proof from the Course Notes, Lemma 3.6, page 84 that the recurrence

for MergeSort is non-decreasing, to prove that our T is also non-decreasing. Use this fact, and no

further induction, to prove that T 2 �(lgn).

Solution: The �rst step is to show that T is nondecreasing. I de�ne a predicate, slightly modi�ed from

Lemma 3.6 (m � n, rather than m < n)

P (n) : 8m 2 N;m � n) T (m) � T (n)

I claim 8n 2 N+; P (n)

Proof, by complete induction:

Induction step: Assume that n is an arbitrary positive natural number, and that for every natural

number 1 � k < n P (n) is true. I consider cases where n < 3 and n > 2.

Case 1 � n < 3: P (1) is vacuously true, since there are no positive integers less than 1. To test

P (2) I have to evaluate:

T (1) = 1 � T (2) = 1 + 1 = 2 # by de�nition of T

In both cases, P (n) holds.

Case n > 2: By Lemma 3.3 and n > 1 I know that 1 � bn=2c � bn=2c and 1 � n� 1 < n, so by

assumption P (bn=2c), P (en=2e), and P (n � 1) all hold. Also, 1 � d(n � 1)=2e; b(n � 1)=2c,
since n � 3. And, since P (n � 1) is assumed, by transitivity of � I need only show that

T (n) � T (n� 1). I have

T (n� 1) = 1 +maxfT (d(n� 1)=2e); T (b(n� 1)=2c)g # by IH for n� 1

� 1 + maxfT (dn=2e; T (bn=2c)g
# by IH for dn=2e; bn=2c and nondecreasing property of oor, ceiling

= T (n)

So P (n) holds in this case.

So, 8n 2 N+, if P (k) holds for 1 � k < n, then P (n) holds also.

I conclude that 8n 2 N; P (n), by complete induction.

Prove that T 2 �(lgn): I assume, without proof (done in class) that if n is a power of 2, then T (n) =

1 + lgn. For convenience, I de�ne n̂ = 2dlgne, the \next" power of 2 no smaller than n. Since

dxe < x + 1, I know that n̂=2 < n � n̂, and both n̂ and n̂=2 are powers of 2, provided n � 2.. I

use these to prove:

9c1; c2 2 R+;9B 2 N; 8n 2 N; n � B ) c1 lgn � T (n) � c2 lgn

In other words, I prove that T 2 �(lgn).
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Pick c1 = 1=2, c2 = 3, and B = 4. Then c� 1; c2 2 R1 and B 2 N. Assume n � B, then

T (n) � T (n̂) # T nondecreasing and n � n̂

= 1 + lg n̂ # n̂ is a power of 2; lg is nondecreasing

< 1 + lg(2n) # n̂=2 < n) n̂ < 2n

= 1 + lgn+ lg 2 = lg 2 + 2 � lgn+ 2 lgn # n � B � 2

= 3 lgn = c lgn

. . . also

T (n) � T (n̂=2) # T nondecreasing and n > n̂=2

= 1 + lg n̂=2 # n̂=2 is a power of 2

� 1 + lgn=4 # n̂ > n=2

= 1 + lgn� lg 4 = lgn� 1 =
1

2
lgn+

1

2
lgn� 1

� 1

2
lgn # n � B = 4) lgn � 2

= c1 lgn

Thus,

9c1; c2 2 R+; 9B 2 N; 8n 2 N; n � B ) c1 lgn � T (n) � c2 lgn

since c1 = 1=2, c2 = 3, and B = 4 satisfy the claim.
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