1. Write a detailed structured proof that $5 n^{4}-3 n^{2}+1 \in \mathcal{O}\left(6 n^{5}-4 n^{3}+2 n\right)$.

Proof outline: By definition of " \mathcal{O} ", we have to show

$$
\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow 5 n^{4}-3 n^{2}+1 \leqslant c\left(6 n^{5}-4 n^{3}+2 n\right) .
$$

This can be done using the following proof structure.
Let $c^{\prime}=\ldots$ Then $c^{\prime} \in \mathbb{R}^{+}$.
Let $B^{\prime}=\ldots$ Then $B^{\prime} \in \mathbb{N}$.
Assume $n \in \mathbb{N}$ and $n \geqslant B^{\prime}$.
\ldots show that $5 n^{4}-3 n^{2}+1 \leqslant c^{\prime}\left(6 n^{5}-4 n^{3}+2 n\right) \ldots$
Then $\forall n \in \mathbb{N}, n \geqslant B^{\prime} \Rightarrow 5 n^{4}-3 n^{2}+1 \leqslant c^{\prime}\left(6 n^{5}-4 n^{3}+2 n\right)$.
Then $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow 5 n^{4}-3 n^{2}+1 \leqslant c\left(6 n^{5}-4 n^{3}+2 n\right)$.
Scratch work: Working "forward" from the left-hand side, we get:

$$
\begin{array}{rlrl}
5 n^{4}-3 n^{2}+1 & \leqslant 5 n^{4}+1 & \\
& \leqslant 5 n^{4}+n^{4} & & \text { if } n \geqslant 1 \\
& \leqslant 6 n^{4} & & \\
& \leqslant n \cdot n^{4} & & \text { if } n \geqslant 6 \\
& \leqslant n^{5} & &
\end{array}
$$

(Note that there are other inequalities we could have reached, e.g., $6 n^{4} \leqslant 6 n^{5}$ for all $n \geqslant 1$.) Working "backward" from the right-hand side, we get:

$$
\begin{array}{rlr}
6 n^{5}-4 n^{3}+2 n & \geqslant 6 n^{5}-4 n^{3} \\
& \geqslant 6 n^{5}-4 n^{5} \\
& \geqslant 2 n^{5} & \\
& \geqslant n^{5} & \text { because }-n^{3} \geqslant-n^{5} \\
\end{array}
$$

Since both chains of inequalities connect, we are done: we can pick $B=6$ (because we require $n \geqslant 6$ in our first chain) and $c=1$.
Proof: (This is the actual final "solution". We skip the formal introduction of B^{\prime} and c^{\prime} and instead, simply use their values directly. This style of proof is fine, and it is a little less verbose than using " B "' and " c "' throughout the argument.)
Assume $n \in \mathbb{N}$ and $n \geqslant 6$.
Then, $5 n^{4}-3 n^{2}+1 \leqslant 5 n^{4}+1$

$$
\begin{array}{lr}
\leqslant 5 n^{4}+n^{4} & \text { since } n \geqslant 6>1 \\
\leqslant 6 n^{4} & \\
\leqslant n \cdot n^{4} & \text { since } n \geqslant 6 \\
\leqslant 2 n^{5} & \\
\leqslant 6 n^{5}-4 n^{5} & \\
\leqslant 6 n^{5}-4 n^{3} & \text { since }-n^{5} \leqslant-n^{3} \\
\leqslant 6 n^{5}-4 n^{3}+2 n . &
\end{array}
$$

Then $\forall n \in \mathbb{N}, n \geqslant 6 \Rightarrow 5 n^{4}-3 n^{2}+1 \leqslant 6 n^{5}-4 n^{3}+2 n$.
Then $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geqslant B \Rightarrow 5 n^{4}-3 n^{2}+1 \leqslant c\left(6 n^{5}-4 n^{3}+2 n\right) . \quad$ \# pick $B=6$ and $c=1$
Then $5 n^{4}-3 n^{2}+1 \in \mathcal{O}\left(6 n^{5}-4 n^{3}+2 n\right)$, by definition.
2. Write a detailed structured proof that $6 n^{5}-4 n^{3}+2 n \notin \mathcal{O}\left(5 n^{4}-3 n^{2}+1\right)$.

Proof outline: From the negated definition of " \mathcal{O} ", we have to prove

$$
\forall c \in \mathbb{R}^{+}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geqslant B \wedge 6 n^{5}-4 n^{3}+2 n>c\left(5 n^{4}-3 n^{2}+1\right)
$$

This can be done with the following proof structure.
Assume $c \in \mathbb{R}^{+}$and $B \in \mathbb{N}$.
Let $n_{0}=\ldots \quad \#$ an expression containing B and c
...show that $n_{0} \in \mathbb{N}$...
...show that $n_{0} \geqslant B \ldots$
\ldots show that $6 n_{0}^{5}-4 n_{0}^{3}+2 n_{0}>c\left(5 n_{0}^{4}-3 n_{0}^{2}+1\right) \ldots$
Then, $\exists n \in \mathbb{N}, n \geqslant B \wedge 6 n^{5}-4 n^{3}+2 n>c\left(5 n^{4}-3 n^{2}+1\right)$.
Then, $\forall c \in \mathbb{R}^{+}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geqslant B \wedge 6 n^{5}-4 n^{3}+2 n>c\left(5 n^{4}-3 n^{2}+1\right)$.
Scratch work: The property of n_{0} that will be most difficult to show is $6 n_{0}^{5}-4 n_{0}^{3}+2 n_{0}>c\left(5 n_{0}^{4}-\right.$ $3 n_{0}^{2}+1$), so we focus on it first. It is tempting to try to solve for n_{0} - and if the expression were simpler, this would yield an appropriate value. But it will be complicated in this case, and it is not necessary. Remember that, intuitively, we are simply trying to prove that $6 n^{5}-4 n^{3}+2 n$ is larger than $5 n^{4}-3 n^{2}+1$ by more than a constant factor.
Working "forward" from the left-hand side, we get:

$$
\begin{aligned}
6 n^{5}-4 n^{3}+2 n & >6 n^{5}-4 n^{3} & & \text { if } n \geqslant 1 \\
& \geqslant 6 n^{5}-4 n^{5} & & \text { if } n \geqslant 1 \\
& =2 n^{5} & &
\end{aligned}
$$

Working "backward" from the right-hand side, we get:

$$
\begin{aligned}
5 n^{4}-3 n^{2}+1 & <5 n^{4}+1 & & \text { if } n \geqslant 1 \\
& \leqslant 6 n^{4} & & \text { if } n \geqslant 1
\end{aligned}
$$

Now, we want $2 n^{5}>c\left(6 n^{4}\right)$, i.e., $n^{5}>3 c n^{4}$. This will be true as long as $n>3 c$. Since $c \in \mathbb{R}^{+}$, to ensure $n \in \mathbb{N}$, we can pick any value $n \geqslant\lceil 3 c\rceil+1$. This guarantees $n \geqslant 1$, which is needed for the inequalities above to hold. Finally, we also need $n \geqslant B$, which can be achieved simply by picking $n=B+\lceil 3 c\rceil+1$.
Proof:
Assume $c \in \mathbb{R}^{+}$and $B \in \mathbb{N}$.
Let $n_{0}=B+\lceil 3 c\rceil+1$.
Then $n_{0} \in \mathbb{N}$ because $B \in \mathbb{N}$ and $\lceil 3 c\rceil \in \mathbb{N}$ for all $c \in \mathbb{R}^{+}$.
Then $n_{0} \geqslant B$ (in fact, $n_{0}>B$).
Then $6 n_{0}^{5}-4 n_{0}^{3}+2 n_{0}>6 n_{0}^{5}-4 n_{0}^{3} \quad$ since $n_{0} \geqslant 1$

$$
\begin{array}{lr}
\geqslant 6 n_{0}^{5}-4 n_{0}^{5} & \text { since } n_{0} \geqslant 1 \\
=2 n_{0}^{5} & \\
=n_{0}\left(2 n_{0}^{4}\right) & \\
>3 c\left(2 n_{0}^{4}\right) & \text { since } n_{0}>3 c \\
=c\left(6 n_{0}^{4}\right) & \\
\geqslant c\left(5 n_{0}^{4}+1\right) & \text { since } n_{0} \geqslant 1 \\
>c\left(5 n_{0}^{4}-3 n_{0}^{2}+1\right) . &
\end{array}
$$

Then, $\exists n \in \mathbb{N}, n \geqslant B \wedge 6 n^{5}-4 n^{3}+2 n>c\left(5 n^{4}-3 n^{2}+1\right)$.

Then, $\forall c \in \mathbb{R}^{+}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geqslant B \wedge 6 n^{5}-4 n^{3}+2 n>c\left(5 n^{4}-3 n^{2}+1\right)$.
Then $6 n^{5}-4 n^{3}+2 n \notin \mathcal{O}\left(5 n^{4}-3 n^{2}+1\right)$, by definition.

