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Consider the following algorithm:

def order(L):

""" (list of numbers) -> None

Order L from smallest to largest. L is changed in-place. """

i = 1

while i < len(L):

j = i

while j > 0 and L[j] < L[j-1]:

L[j], L[j-1] = L[j-1], L[j] # swap L[j] and L[j-1]

j = j - 1

i = i + 1

1. Compute the exact number of \swaps" (executing the line that says swap) performed by the algorithm in

the worst-case, on any list L of length n.

The def line can be ignored: it is part of the syntax to define a function, but not something that

actually gets executed every time we call the function. So we count only the steps in the body of the

function.

The outer loop iterates over i = 1,2,3,...,n-1.

For each value of i, the inner loop iterates over j = i,i-1,...,2,1, as long as L[j] < L[j-1]. In

the worst-case (when L is initially sorted in reverse order), this happens for every value of j.

For each value of j, the algorithm swaps once: 1 time when i = 1 (for j = 1), 2 times when i = 2

(for j = 2 and j = 1), . . . , n� 1 times when i = n-1 (for j = n-1 and . . . and j = 1).

So in total, the algorithm performs exactly 1 + 2 + � � �+ n� 1 = n(n� 1)=2 = n2=2� n=2 swaps, in

the worst-case.
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2. Compute the exact number of \steps" (basic operations) performed by the algorithm in the worst-case, on

any list L of length n.

First, let’s indicate the number of “steps” taken by every line in the algorithm. Remember that it

doesn’t actually matter exactly how we count our steps, as long as every portion of the code that takes

constant time (meaning, time independent of the input size) is counted as a constant number of steps.

Here, we count one step for every operator (=, -, +, <, >, []) and every keyword (while, and, len).

def order(L):

""" (list of numbers) -> None

Order L from smallest to largest. L is changed in-place. """

i = 1 # 1 step

while i < len(L): # 3 steps

j = i # 1 step

while j > 0 and L[j] < L[j-1]: # 7 steps

L[j], L[j-1] = L[j-1], L[j] # 7 steps

j = j - 1 # 2 steps

i = i + 1 # 2 steps

As before, we count only the lines in the body. The outer loop iterates over i = 1,2,3,...,n-1.

For each value of i, the inner loop iterates over j = i,i-1,...,2,1, in the worst-case (as argued in

the first question).

For each value of j, the algorithm performs exactly 16 steps. So over all values of j, a total of 16i

steps.

In addition, for each value of i, there are steps performed outside of the inner loop: 6 steps for the

lines outside the inner loop, and an additional 7 steps to evaluate the last inner loop condition — when

the condition becomes False. So each iteration of the outer loop performs 16i+ 13 steps.

Together with the first line, and the extra 3 steps for the last outer loop condition, the number of steps

performed by the algorithm is exactly:

 
n�1X
i=1

(16i+ 13)

!
+ 4 = 16

 
n�1X
i=1

i

!
+ 13

 
n�1X
i=1

1

!
+ 4

= 16n(n� 1)=2 + 13(n� 1) + 4

= 8n2 + 5n� 9

NB: As stated earlier, our choice of assigning each operation and keyword one “step” was arbitrary —

we could just as easily assign each line or statement that was independent of n a step. In other words,

in the accounting above, making each line worth 1 step (rather than some being 7 or 2) would make

the accounting simpler, and not change the quality of the outcome: O(n2).
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