Prove or disprove each of the following statements. Write detailed proof structures and justify your work.

1. For all natural numbers n, if there is a natural number k such that n = 3k + 1, then there is a natural number j such that $n^2 = 3j + 1$.

(Optional), write the statement symbolically, to help understand the structure:

$$orall n \in \mathbb{N}, (\exists k \in \mathbb{N}, n = 3k+1) \Rightarrow \left(\exists j \in \mathbb{N}, n^2 = 3j+1
ight)$$

Now Try a direct proof:

Assume *n* is a generic natural number # in order to introduce \forall Assume $\exists k \in \mathbb{N}, n = 3k + 1$ # in order to introduce \Rightarrow Then $n^2 = (3k + 1)^2$ # sub in *k* from assumption Then $n^2 = 3(3k^2 + 2k) + 1$ # expand and factor 3 out Then $\exists j \in \mathbb{N}, n^2 = 3j + 1$ # pick $j = (3k^2 + 2) \in \mathbb{N}$ # since 3, $k, 2 \in \mathbb{N}$, which is closed under + and × Then $\exists k \in \mathbb{N}, n = 3k + 1 \Rightarrow \exists j \in \mathbb{N}, n^2 = 3j + 1$ # introduced \Rightarrow Conclude $\forall n \in \mathbb{N}(\exists k \in \mathbb{N}, n = 3k + 1) \Rightarrow (\exists j \in \mathbb{N}, n^2 = 3j + 1)$ # introduced \forall

2. For all real numbers r, s, if r and s are both positive, then $\sqrt{r} + \sqrt{s} = \sqrt{r+s}$.

It seems too good to be true, so try a disproof. <u>First</u>, write the negation symbolically to understand the structure:

$$\exists r,s \in \mathbb{R}, (r > 0 \land s > 0) \land \sqrt{r} + \sqrt{s}
eq \sqrt{r+s}$$

Pick r = 1, s = 1 # the first, and easiest, reals to work with to introduce \exists Then $r, s \in \mathbb{R}$ # $r = s = 1 \in \mathbb{R}$ Then $r > 0 \land s > 0$ # 1 > 0Then $\sqrt{r} + \sqrt{s} = \sqrt{1} + \sqrt{1} = 1 + 1 = 2 \neq \sqrt{2} = \sqrt{1+1} = \sqrt{r+s}$ # substitute r = s = 1 and arithmetic Then $\exists r, s \in \mathbb{R}, (r > 0 \land s > 0) \land \sqrt{r} + \sqrt{s} \neq \sqrt{r+s}$ # introduced \exists

3. For all real numbers r, s, if r and s are both positive, then $\sqrt{r} + \sqrt{s} \neq \sqrt{r+s}$.

First, write the statement symbolically:

$$orall r \in \mathbb{R}^+, orall s \in \mathbb{R}^+, r > 0 \land s > 0 \Rightarrow \sqrt{r} + \sqrt{s}
eq \sqrt{r+s}$$

Second, try a direct proof: Assume $r \in \mathbb{R}^+$ and $s \in \mathbb{R}^+$. Assume r > 0 and s > 0. Then, $\sqrt{r} + \sqrt{s} = \dots$ No obvious way to continue. Next, try an indirect proof: Assume $r \in \mathbb{R}^+$ and $s \in \mathbb{R}^+$. Assume $\sqrt{r} + \sqrt{s} = \sqrt{r+s}$. Then, $(\sqrt{r} + \sqrt{s})^2 = (\sqrt{r+s})^2$. # square both sides Then, $(\sqrt{r})^2 + 2\sqrt{r}\sqrt{s} + (\sqrt{s})^2 = r+s$. # expand both sides Then, $2\sqrt{rs} = 0$. # subtract r + s from both sides Then, rs = 0. # divide by 2 and square both sides Then, $r = 0 \lor s = 0$. # Now, do a sub-proof by cases. Assume r = 0. Then, $r \ge 0$. Then, $r \ge 0$. Then, $r \ge 0 \lor s \ge 0$. Then, $\neg (r > 0 \land s > 0)$. Assume s = 0. Then, $s \ge 0$. Then, $r \ge 0 \lor s \ge 0$. Then, $r \ge 0 \lor s \ge 0$. In either case, $\neg (r > 0 \land s > 0)$. In either case, $\neg (r > 0 \land s > 0)$. Then, $r > 0 \land s > 0 \Rightarrow \sqrt{r} + \sqrt{s} \ne \sqrt{r+s}$. # introduced contrapositive Then, $\forall r \in \mathbb{R}^+, \forall s \in \mathbb{R}^+, r > 0 \land s > 0 \Rightarrow \sqrt{r} + \sqrt{s} \ne \sqrt{r+s}$. 4. For all real numbers x and y, $x^4 + x^3y - xy^3 - y^4 = 0$ exactly when $x = \pm y$.

<u>First</u>, write the statement symbolically (be careful to handle " \pm " correctly):

$$orall x \in \mathbb{R}, orall y \in \mathbb{R}, x^4 + x^3y - xy^3 - y^4 = 0 \Leftrightarrow (x = y \lor x = -y)$$

Second, start the proof structure for the universal quantifiers: Assume $x \in \mathbb{R}$ and $y \in \mathbb{R}$. # To prove an equivalence, we prove the implication in each direction. First assume $x^4 + x^3y - xy^3 - y^4 = 0$. Then, $x^3(x+y) - y^3(x+y) = 0$. # factor out the expression Then, $(x^3 - y^3)(x + y) = 0$. # factor out the expression Then, $x^3 - y^3 = 0 \lor x + y = 0$. $\# ab = 0 \Leftrightarrow a = 0 \lor b = 0$ # Now, do a sub-proof by cases. Assume $x^3 - y^3 = 0$. Then, $x^3 = y^3 \#$ add y^3 to both sides Then, x = y # take cube roots on both sides Then, $x = y \lor x = -y \quad \#$ introduce \lor Assume x + y = 0. Then, x = -y # subtract y from both sides Then, $x = y \lor x = -y$ # introduce \lor In either case, $x = y \lor x = -y$. Then, $x^4 + x^3y - xy^3 - y^4 = 0 \Rightarrow x = \pm y$. Next assume $x = \pm y$. Then, $x = y \lor x = -y$. # expand "±" # Now, do a sub-proof by cases. Assume x = y. Then, $x^3 = y^3$. # cube both sides Then, $x^3 - y^3 = 0$. # subtract y^3 from both sides Then, $(x^3 - y^3)(x + y) = 0$. # multiply both sides by (x + y)Then, $x^4 + x^3y - xy^3 - y^4 = 0$. # expand Assume x = -y. Then, x + y = 0. # add y to both sides Then, $(x^3 - y^3)(x + y) = 0$. # multiply both sides by $(x^3 - y^3)$ Then, $x^4 + x^3y - xy^3 - y^4 = 0$. # expand In both cases, $x^4 + x^3y - xy^3 - y^4 = 0$. Then, $x = \pm y \Rightarrow x^4 + x^3y - xy^3 - y^4 = 0$. Then, $x^4 + x^3y - xy^3 - y^4 = 0 \Leftrightarrow x = \pm y$. # introduce \Leftrightarrow Then, $orall x \in \mathbb{R}, orall y \in \mathbb{R}, x^4 + x^3y - xy^3 - y^4 = 0 \Leftrightarrow (x = y \lor x = -y).$ (Notice how the detailed proof structure makes it easy to keep track of assumptions, and cases and sub-cases, and to know exactly when we are done.)