
Symbolic Logic

1. Consider the following statements:

(S1) Programs that passed test 1 also passed test 2.
(S2) Programs passed test 2 unless they failed test 1.
(S3) Programs passed test 2 only if they passed test 1.

(a) Rewrite statements (S1), (S2), and (S3) using precise symbolic notation.

Solution:
Let P represent the set of all programs.
Let T1(p) denote: “program p passed test 1”.
Let T2(p) denote: “program p passed test 2”.
Then, (S1) can be written: ∀p ∈ P, T1(p)→ T2(p).
(S2) can be written: ∀p ∈ P, T1(p)↔ T2(p).
(S3) can be written: ∀p ∈ P, T2(p)→ T1(p).

Alternate Solution: Let T (p, n) denote: “program p passed test n”. Then, in the solution above, replace
every “T1(p)” with T (p, 1) and every “T2(p)” with T (p, 2).

(b) Which of the three statement have the same meaning?

Solution: Based on the answers for part (a), none of the three statements have the same meaning (i.e., all
three have a different meaning).

2. Consider the statement:

(S4) All Java programs passed test 1.

(a) Rewrite (S4) using implication but no quantification.

Solution: “If a program was written in Java, then it passed test 1.”

(b) Rewrite (S4) using precise symbolic notation.

Solution:
Let P represent the set of all programs, J(p) denote: “program p was written in Java”, and T1(p)
denote: “program p passed test 1”.
Then, (S4) can be written: ∀p ∈ P, J(p)→ T1(p).

Note: It would be reasonable but not as good to say instead:
Let J represent the set of all Java programs and T1(p) denote: “program p passed test 1”.
Then, (S4) can be written ∀p ∈ J, T1(p).
The reason why this is not as good as the first answer is because it makes it impossible to talk about
programs other than the ones in J . If we wanted to talk about programs not written in Java, it would
not be good enough (and it would be incorrect notation) to write something like “∀p /∈ J” because
this would have the meaning of “for everything that is not a Java program” (including people, birds,
colours, . . .).
The first answer is the best way to allow the possibility that every property mentionned in the statement
could be true or false, while limiting the domain of discussion to the type of object we are interested
in.

(c) Write the contrapositive of (S4), symbolically and in English.

Solution: ∀p ∈ P,¬T1(p)→¬J(p).
“Programs that failed test 1 were not written in Java.”

(d) Write the converse of (S4), symbolically and in English.
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Solution: ∀p ∈ P, T1(p)→ J(p).
“All programs that passed test 1 were written in Java.”

3. Draw a Venn diagram with sets to represent “programs written in C”, “programs that passed test 1”, and “pro-
grams that passed test 2” (make sure that your sets overlap to divide the diagram into eight regions). Then, for
each program, write the program number in the appropriate region of your diagram (based on the information
in the database above).

Solution:
Let P denote the set of all programs.
Let C denote the set of programs written in C.
Let T1 denote the set of programs that passed test 1.
Let T2 denote the set of programs that passed test 2.
The diagram is given in the figure below (or at the top of the next page).
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Figure 1: Venn diagram for Question 3.

4. Draw three copies of your diagram from the preceding question. On the first copy, shade the region(s) that
corresponds to “programs that have passed every test”. On the second copy, shade the region(s) that corresponds
to “programs that have passed some text”. On the third copy, share the region(s) that corresponds to “programs
that have passed no test”.

Solution: In the figures below or at the top of the next page, grey regions represent the “shaded” parts (white
regions are “unshaded”). Also note that we take the meaning of “some” to be inclusive (i.e., a program
that passed every test is considered to have passed some test).
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Figure 2: Programs that have passed every test.

P

C

2

3

5

6

4 1
T T1 2

Figure 3: Programs that have passed some test.
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Figure 4: Programs that have passed no test.

5. State whether each statement below is true or false. When appropriate, justify your answer by citing a specific
counter-example.

(S5) Every Java program passed some test.
(S6) Some Java program passed no test.
(S7) No C program passed every test.

Solution:
(S5) is true, from Figure 3 (or directly from the database: program 1 passed test 2, program 2 passed test
2, and program 4 passed test 1).
(S6) is false, from Figure 4 (also, because it is the negation of (S5)).
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(S7) is false, from Figure 2: program 6 is a counter-example.

6. Let P denote the sentence “x is even”. Let Q denote the sentence “x2 is even”. Write the sentence P → Q in
English:

(a) Using the words “if, then”.

(b) Using the word “implies”.

(c) Using the words “only if”.

(d) Using the words “is necessary for”.

(e) Using the words “is sufficient for”.

Solution:
(a) If x is even, then x2 is even.

(b) x is even implies x2 is even.

(c) x is even only if x2 is even.

(d) It is necessary that x2 be even for x to be even.
Note that “x2 is even is necessary for x is even” is not even a correct English sentence! Part of the point
of this question was to make people realize that translating from symbolic notation to English involves
more than just one-by-one replacement of symbols by words. You have to think about the meaning of the
symbols and write a correct English sentence that has the same meaning.

(e) It is sufficient that x be even for x2 to be even.

7. Consider the following sentence about integers a, b, c:

If a divides bc, then a divides b or a divides c.

For each sentence below, state whether it is the same as, the negation of, the converse of, the contrapositive of,
or unrelated to the statement above. Justify each of your answers briefly (e.g., by writing both statements in
symbolic notation).

(a) If a divides b or a divides c, then a divides bc.

(b) If a does not divide b or a does not divide c, then a does not divide bc.

(c) a divides bc and a does not divide b and a does not divide c.

(d) If a does not divide b and a does not divide c, then a does not divide bc.

(e) a does not divide bc or a divides b or a divides c.

(f) If a divides bc and a does not divide c, then a divides b.

(g) If a divides bc or a does not divide b, then a divides c.

Solution: The standard mathematical notation used to represent “divides” is a vertical bar, so for example, “a
divides bc” can be represented symbolically as a|bc.
It would also be perfectly fine to introduce a predicate letter like D(x, y) to represent “x divides y” (so
that “a divides bc” becomesD(a, bc), for example), or even to introduce three unrelated letters to represent
each of the three sentences (e.g., P to represent “a divides bc”, etc.), since we are only concerned with the
logical structure of the various sentences, not their meaning.
If we use the vertical bar notation, the original sentence can be written symbolically as follows:

a|bc→ a|b ∨ a|c
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(a) The sentence becomes: a|b ∨ a|c→ a|bc.
This is the converse of the original sentence.

(b) The sentence becomes: ¬(a|b) ∨ ¬(a|c)→¬(a|bc).
This is unrelated to the original sentence.

(c) The sentence becomes: a|bc ∧ ¬(a|b) ∧ ¬(a|c).
This is the negation of the original sentence.

(d) The sentence becomes: ¬(a|b) ∧ ¬(a|c)→¬(a|bc).
This is the contrapositive of the original sentence.

(e) The sentence becomes: ¬(a|bc) ∨ a|b ∨ a|c.
This is equivalent to the original sentence.

(f) The sentence becomes: a|bc ∧ ¬(a|c)→ a|b.
This is equivalent to the original sentence.

(g) The sentence becomes: a|bc ∨ ¬(a|b)→ a|c.
This is unrelated to the original sentence.

8. For each quantified statement below, rewrite the statement in English and state whether it is true or false. When
appropriate, justify your answer with an example or counter-example.

(a) ∃m ∈ N ∀n ∈ N,m > n

(b) ∀m ∈ N ∃n ∈ N,m > n

(c) ∀n ∈ N ∃m ∈ N,m > n

Solution:
(a) One way to translate the statement is: “There exists a natural number larger than all other natural numbers.”

This statement is clearly false: there is no “largest” natural number.

(b) One way to translate the statement is: “For all natural numbers, there is another natural number that is
smaller.”
This statement is false because there is no natural number smaller than 0 (so when m = 0, no value of n
exists to satisfy m > n).

(c) One way to translate the statement is: “For all natural numbers, there is another natural number that is
greater.”
This statement is true because, for example, every natural number n has a successor n+ 1.

9. In calculus, a function f with domain R (the real numbers) is defined to be strictly increasing provided that for
all real numbers x and y, f(x) < f(y) whenever x < y. Complete each of the following sentences using the
appropriate symbolic notation.

(a) A function f with domain R is strictly increasing provided that . . .

Solution: ∀x ∈ R,∀y ∈ R, x < y→ f(x) < f(y)

(b) A function f with domain R is not strictly increasing provided that . . .

Solution: ∃x ∈ R,∃y ∈ R, x < y ∧ f(x) 6< f(y)
Alternate Solution: ¬

(
∀x ∈ R,∀y ∈ R, x < y→ f(x) < f(y)

)
This is not as good as the first solution: in general, expressing the negation of a statement simply as
“¬ statement” gives little information compared to taking the time to “work the negation in”.
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10. Find three setsA, B, C with as few elements as possible so that statement (S1) below is true but statement (S2)
is false.

(S1) ∀x ∈ A ∃y ∈ B, x+ y ∈ C

(S2) ∃y ∈ B ∀x ∈ A, x+ y ∈ C

Solution: Let A = {0, 1}, B = {0, 1}, C = {1}.
Then, (S1) is true because for x = 0, we can pick y = 1 and for x = 1, we can pick y = 0. However,
(S2) is false because when y = 0, x = 0 fails (x+ y /∈ C) and when y = 1, x = 1 fails.

11. At a murder trial, four witnesses give the following testimony.

Alice: If either Bob or Carol is innocent, then so am I.

Bob: Alice is guilty, and either Carol or Dan is guilty.

Carol: If Bob is innocent, then Dan is guilty.

Dan: If Bob is guilty, then Carol is innocent; however, Bob is innocent.

(a) Is the testimony consistent, i.e., is it possible that everyone is telling the truth?

Solution: First, we define some abbreviations:
A: “Alice is innocent”
B: “Bob is innocent”
C: “Carol is innocent”
D: “Dan is innocent”
Then, we can rewrite the statements symbolically (with the understanding that “guilty = ¬ innocent”):
Alice: (B ∨ C)→A

Bob: ¬A ∧ (¬C ∨ ¬D)
Carol: B→¬D
Dan: (¬B→ C) ∧B
Now, let us assume that everyone’s testimony is true. We will see that this leads to a contradiction,
which means that someone must be lying.
Bob’s testimony means that Alice is guilty. Then, the contrapositive of Alice’s testimony means that
both Bob and Carol are guilty. But this contradicts Dan’s testimony that Bob is innocent.

(b) If every innocent (not guilty) person tells the truth and every guilty person lies, determine (if possible) who
is guilty and who is innocent.

Solution: Using the same notation as above, there are many ways of determining who is innocent and
who is guilty, including trial-and-error. One possibility is that Alice and Carol are guilty while Bob
and Dan are innocent. Then, Alice’s statement is false (because B is true but A is false), Bob’s
statement is true (because A is false and C is false), Carol’s statement is false (because B is true and
D is true), and Dan’s statement is true (because B is true), as required.

12. Consider the following statement: (1)

“If a program has a syntax error, then the program will not compile.”

(a) Define the domain and predicates necessary to translate the statement into precise symbolic notation.
Domain: The set of programs, P.
Let S(x) represent x has a syntax error.
Let C(x) represent x will compile.

(b) Translate (1) into precise symbolic notation. ∀p ∈ P, S(p)→ ¬C(p)
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(c) (4 marks) Give the converse of (1) first in English, then in precise symbolic notation.
If a program does not compile, then it has a syntax error.
∀p ∈ P,¬C(p)→ S(p)

(d) Give the contrapositive of (1) first in English, then in precise symbolic notation.
If a program compiles then it does not have a syntax error.
∀p ∈ P,C(p)→ ¬S(p)

(e) (4 marks) Give the contrapositive of your answer to 18c in precise symbolic notation.
∀p,¬S(p)→ C(p) i.e., in words:
If a program does not have a syntax error then it will compile.

13. (40 marks) Assume you are given the following predicate symbols and your domain is N, the set of natural
numbers (we assume that 0 ∈ N).

g(x, y): x is greater than y

e(x, y): x equals y

sum(x, y, z): x+ y = z

prod(x, y, z): x · y = z

Translate the following statements into idiomatic English:

(a) ∀x ∈ N, g(x, 0)
Every natural number is greater than 0.

(b) ∀x ∈ N,∃z ∈ N, prod(z, 2, x)
Every natural number is even.

(c) ∀a ∈ N,∀b ∈ N,∀c ∈ N, (g(a, b) ∧ g(b, c))→ g(a, c)
For all natural numbers, if a is greater than b and b greater than c, then a is greater than c.

(d) ¬(∀n ∈ N,∃m ∈ N, g(m,n))
There does not exist a largest number
We get this from first doing a literal translation;
It is not the case that, for any natural number there exists a greater number.

Translate the following English statements into precise symbolic notation. Only use the predicates and domain
defined above. Make sure you specify the domain of your variables in your solution and that your predicates are
boolean.

(e) Every positive multiple of 5 is greater than 7.
∀x ∈ N∃y ∈ N, p(y, 5, x)→ g(x, 7)

(f) There is an odd integer.
∃x ∈ N∃y ∈ N,∃z ∈ N, prod(y, 2, z) ∧ sum(z, 1, x)

(g) If x+ y = z then y + x = z.
∀x ∈ N,∀y ∈ N,∀z ∈ N, sum(x, y, z)→ sum(y, x, z)

(h) Not all integers are multiples of 2.
¬∀x ∈ N,∃y ∈ N, prod(y, 2, x)
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14. Logic Puzzle: There are many brain teasers involving deserted islands and the people who inhabit them. One
such puzzle, involves an island consisting of two different races. The Truth Tellers and the Liars. The Truth
Tellers always tell the truth and the Liars, falsehoods. Suppose you meet three people U, V and W from this
island. The first person U does not speak your language however V offers to translate. For each case, determine
(if possible) from their responses to the following question, which race they each belong. If it is not possible,
clearly show why it is not possible to determine which race at least one of U, V or W belong to.

How many of you are Truth Tellers?

Responses:

(a) V : “U said, ‘Exactly one of us is a Truth Teller.’”
W : “Don’t believe V . He is a Liar”.
If V is a Truth Teller then U must have said Exactly one of us is a Truth Teller. Now if U is a liar, then there
cannot be exactly one truth teller and W must be a truth teller–this contradicts V’s statement. Therefore,
U must be a truth teller which contradicts U ’s statement. Therefore, it is not possible to determine.

(b) V : “U said, ‘Exactly one of us is a Liar.’”
W : “V ’s statement is true.”
If V is telling the truth and U said Exactly one of us is a Liar then both V and W are Truth Tellers.
However, that means that U must be a Liar, which means that U told the truth and therefore cannot be a
Liar. Therefore we know that V cannot have told the truth.
Suppose that V is a Liar. Then U could not have said Exactly one of us is a Liar and W ’s statement is a
lie. Therefore W and V are liars. What about U? We don’t know what U said, so we don’t know whether
U is a liar or not. Therefore we can not determine which race U belongs to.

15. Consider our example from class about rainy days.

(2) Every rainy day I bring an umbrella.

(3) If I bring an umbrella, then I stay dry.

(a) For each of the following statements, determine whether it has the same meaning as (2). If it has a different
meaning, make a small alteration to the statement so that it has the same meaning.

i. I bring an umbrella, if it is a rainy day. same
ii. If it is a rainy day, I bring an umbrella. same

iii. I bring an umbrella only if it is a rainy day. It is a rainy day only if I bring an umbrella.
iv. A rainy day is sufficient for me to bring an umbrella. same
v. A rainy day is necessary for me to bring an umbrella. For me to bring an umbrella it is necessary for

it to be a rainy day.

(b) Assume that it is a rainy day. What conclusions can you draw given statements (2) and (3). Explain your
reasoning.
If it is a rainy day, then I willl bring an umbrella and since I have an umbrella, I will stay dry. Therefore I
can conclude that I stay dry and have an umbrella.

(c) Now assume that I forgot my umbrella. What conclusions can you draw? Explain your reasoning.
If I don’t have an umbrella, then it cannot be rainy since otherwise statement (2) would be false. However,
I may or may not be dry because statement (3) is of the form false → p and is therefore true no matter
what the truth value is of p.

16. Recall the table of hockey stats from class.
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Number Pos. Player Team GP G A PTS
1 C Alexei Zhamnov PHI 11 4 8 12
2 RW Jarome Iginla CAL 13 6 6 12
3 C Joe Sakic COL 11 7 5 12
4 C Vincent Damphousse SJ 11 5 6 11
5 RW Martin St. Louis TB 9 4 7 11
6 LW Fredrik Modin TB 9 5 6 11
7 C Saku Koivu MON 11 3 8 11
8 C Peter Forsberg COL 11 4 7 11
9 RW Alexei Kovalev MON 11 6 4 10

(a) Draw a Venn diagram with sets that show “players with 5 or more goals”, “players who have played at
least 11 games”, “players who have more points than games played”. Using the information in the table,
enter each player’s number into the appropriate region of the diagram.

(b) Make a copy of the diagram in (16a)and shade in the region that corresponds to the statement “All players
who have played less than 11 games yet scored more points than games played”.

(c) Make another copy of the diagram in (16a) and shade in the region that corresponds to the statement “Every
player that has more points than games played and has scored at least 5 goals”.

17. The following was heard on TV recently:

“Product X is so good, it won an award!”

The makers of product X want you to believe certain (possibly implicit) hypothesis/hypotheses and conclu-
sion(s).

(a) Write these down explicitly.
Soln:
Hypotheses:

• Product X won an award.
• If a product wins an award then it is so good.

Conclusions: Product X is so good.

(b) Formalize them with appropriate domains and predicates.
Soln:
Let G(x) represent product x is so good. Let A(x) be product x won an award. ∀p ∈ Products, A(p) →
P (p). Therefore, P(X), i.e., product X is so good.

18. There is a set P, of problems that are “polynomial time solvable” and a set NP, of problems that are only “non-
deterministically polynomial time solvable”. Consider the following statement:

(S1) “If P = NP , then the problem SAT is polynomial time solvable.”

(a) Define the domain and predicates necessary to translate the statement into precise symbolic notation.
Soln:
We don’t need a domain for this part. Let e(A,B) represent sets A and B are equal. Let p(x) represent that
problem x is polynomial time solvable.

(b) Translate (S1) into precise symbolic notation. Soln:
e(P,NP )→ p(SAT )
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(c) Give the converse of (S1) first in English, then in precise symbolic notation.
Soln:
If SAT is polynomial time solvable then P = NP . p(SAT ) rightarrowe(P,NP )

(d) Give the contrapositive of (S1) first in English, then in precise symbolic notation.
Soln:
If SAT is not polynomial time solvable then P 6= NP . ¬p(SAT )→ ¬e(P,NP )

(e) Give the contrapositive of your answer to 18c in precise symbolic notation.
Soln:
¬e(P,NP )→ ¬p(SAT )

Now consider the same sentence expressed using quantification:

(S2) If every problem is polynomial time solvable if and only if it is non-deterministically polynomial time
solvable, then the problem SAT is polynomial time solvable.”

(f) Define the domain and predicates necessary to translate the statement into precise symbolic notation.
Soln:
Domain: X is set of all problems, p(x) represents x is polynomial time solvable, np(x) represents that x is
non-deterministically polynomial time solvable.

(g) Translate (S2) into precise symbolic notation. Simplify your answer such that only predicates are negated
(not entire sentences).
Soln:
(∀x ∈ X, p(x)↔ np(x))→ p(SAT )

(h) Give the converse of (S2) first in English, then in precise symbolic notation. Simplify your answer such
that only predicates are negated.
Soln:
If SAT is polynomial time solvable then every problem is polynomial time solvable if and only if it is
non-deterministically polynomial time solvable.
Soln:
¬p(SAT )→ (∀x ∈ X, p(x)↔ np(x))

(i) Give the contrapositive of (S2) first in English, then in precise symbolic notation. Simplify your answer
such that only predicates are negated.
Soln:
If SAT is not polynomial time solvable then there exists a problem that is either in P but not in NP or not
in P but in NP. ¬p(SAT )→ ∃x ∈ X, [(¬p(x) ∧ np(x)) ∨ (p(x) ∧ ¬np(x))]

(j) Give the contrapositive of your answer to 18h in precise symbolic notation. Simplify your answer such
that only predicates are negated.
Soln:

¬(∀x ∈ X, p(x)↔ np(x))→ ¬p(SAT )
⇔ (∃x ∈ X,¬(p(x)↔ np(x)))→ ¬p(SAT )
⇔ (∃x ∈ X,¬(p(x)→ np(x) ∧ np(x)→ p(x)))→ ¬p(SAT )
⇔ (∃x ∈ X,¬(p(x)→ np(x)) ∨ ¬(np(x)→ p(x)))→ ¬p(SAT )
⇔ (∃x ∈ X,¬(¬p(x) ∨ np(x)) ∨ (¬(¬np(x) ∨ p(x))))→ ¬p(SAT )
⇔ (∃x ∈ X, (p(x) ∧ ¬np(x)) ∨ (np(x) ∧ ¬p(x)))→ ¬p(SAT )
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19. Consider the following database D of programs that test inputs. A program in this database may return a
certificate when the input to the algorithm is accepted, rejected or both, and may or may not be linear in running
time.

Program Certificate Linear
1 reject yes
2 accept no
3 accept yes
4 reject no
5 both no
6 neither yes

20. Now that we can write statements precisely, we can draw logical conclusions from a set of statements and prove
that the conclusion is a consequence of the statements. These questions will help prepare you for learning to
write proofs. For each set of statements, define a domain and set of predicates. Rewrite the statements and
conclusions in precise symbolic notation. Assuming that the statements are true, determine which one of the
possible conclusions can be drawn from the statements. Justify your choice of conclusion by explaining how
the two statements imply the conclusion.

Soln:
Domain is P the set of people. Predicates are pow(x): x is a powerful person, pol(x): x is a politician, f(x): x is
easily forgotten.

(a) (S1) “All politicians are powerful people.”
Soln:
∀x ∈ P, pol(s)→ pow(x)
(S2) “No powerful people are easily forgotten.”
Soln:
¬∃x ∈ P, pow(x) ∧ f(x) Possible conclusions:

i. People who are easily forgotten are politicians. Soln:
∀x ∈ P, f(x)→ pol(x)

ii. Politicians are not easily forgotten. Soln:
∀x ∈ P, pol(x)→ ¬f(x)

iii. No powerful people are politicians. Soln:
¬∃x ∈ P, pow(x) ∧ pol(x)

iv. Some easily forgotten people are politicians. Soln:
∃x ∈ P, f(x) ∧ pol(x)

v. All politicians are easily forgotten. Soln:
∀x ∈ P, pol(x)→ f(x)

Conclusion ii). Since (S1) says that all politicians are powerful and (S2) says that powerful people are
never forgotten, we can conclude that politicians are never forgotten.
Soln:
Domain: Let S be the set of characters from the Simpsons. Let t(x) represent x gets in trouble.

(b) (S3) “If Bart gets in trouble then either Homer or Milhouse get in trouble.”
Soln:
t(Bart)→ (t(Homer) ∨ t(Milhouse))
(S4) “Homer does not get in trouble.
Soln:
¬t(Homer)
Possible conclusions:
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i. If Milhouse gets in trouble then Bart gets in trouble. Soln:
t(Milhouse)→ t(Bart)

ii. If Homer does not get in trouble then Milhouse does not get in trouble. Soln:
¬t(Homer)→ ¬t(Milhouse)

iii. Milhouse gets in trouble if Bart gets in trouble. Soln:
t(Bart)→ t(Milhouse)

iv. Bart gets in trouble whenever Homer gets in trouble. Soln:
t(Homer)→ t(Bart)

v. Either Bart gets in trouble or Milhouse gets in trouble. Soln:
t(Bart) ∨ t(Milhouse)

Soln:
Conclusion? iii) Since either Homer or Milhouse get in trouble if Bart gets in trouble and we know Homer
does not get in trouble, we can conclude that if Bart gets in trouble then Milhouse gets in trouble.

21. Assume you are given the following predicate symbols and your domain is N, the set of natural numbers (we
assume that 0 ∈ N).

g(x, y): x is greater than y

e(x, y): x equals y

sum(x, y, z): x+ y = z

prod(x, y, z): x · y = z

Each of the following statements is a mathematical property of the natural numbers. Translate the following
statements into English and state the property.

(a) ∀x ∈ N,∃y ∈ N, prod(x, y, x).

(b) ∀x ∈ N,∃y ∈ N, sum(x, y, x).

(c) ∀x ∈ N,∀y ∈ N, (sum(x, y, z)↔ sum(y, x, z))

(d) ∀x ∈ N,∀y ∈ N,∀z ∈ N, g(x, y) ∧ g(y, z)→ g(x, z)
(e) ∀x ∈ N,∀y ∈ N,∀z ∈ N,∀t ∈ N, [sum(x, y, z) ∧ prod(z, t, w)

↔ (∃u ∈ N,∃v ∈ N, prod(x, t, u) ∧ prod(y, t, v) ∧ sum(u, v, w))]

Now consider the following statements. Using the above predicates rewrite each statement in precise symbolic
notation.

(f) x divides m. Recall that divides means that xy = m for some number y. Soln:
∃c ∈ N, product(x, c,m)

(g) m is the smallest number that x divides. Soln:
∃c ∈ N, product(x, c,m) ∧ ∀d ∈ N, (∃a ∈ N, product(x, a, d))→ g(d, c) ∨ e(d,m)

(h) LCM(x, y,m) : m is the smallest number that both x and y divide. Soln:
∃c ∈ N, product(x, c,m)∧∃d ∈ N, prod(y, d,m)∧∀a ∈ N,∀b ∈ N,∀z ∈ N, prod(x, a, z)∧prod(y, b, z)→
L(m, z) [Hint: Do you need to quantify the variables x, y and m?]

(i) GCD(a, b, c): a is the greatest common divisor of b and c. Soln:
(∃x ∈ N,∃y ∈ N, prod(x, a, b)∧prod(y, a, c))∧∀d ∈ N,∃e ∈ N,∃f ∈ N, prod(d, e, b)∧prod(d, f, c)→
L(d, a)
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22. Consider the following sentence:

(S1) If m = 2n − 1 is a prime number, then n is prime.

[Note: these types of prime numbers are called Mersenne Primes.]

Rewrite (S1) without using “If . . ., then . . .” but using:

(a) “implies” Soln:
m = 2n − 1 is a prime number implies that n is a prime.

(b) “is sufficient for” Soln:
m = 2n − 1 being a prime number is sufficient for n to be a prime.

(c) “is necessary for” Soln:
n being prime is necessary for m = 2n − 1 to be prime.

(d) “whenever” Soln:
n is prime whenever m = 2n − 1 is a prime.

(e) “only if” Soln:
m = 2n − 1 is a prime only if n is a prime.

(f) “requires” Soln:
m = 2n − 1 is a prime requires that n is a prime.

23. Determine whether ∃ can be factored from an implication. In other words, is

∃x ∈ X, (p(x)→ q(x)) ⇔ (∃x ∈ X, p(x))→ (∃x ∈ X, q(x))

true? Explain your reasoning. Marks will only be given for your explanation.

Soln:
Consider when the domain is D={Bart, Homer} and p(Bart) = T and p(Homer) = F , q(Bart) = F and
q(Homer) = F . Then the left side is satisfied by p(Homer) → q(Homer) but the right side cannot be
satisfied since p(Bart) satisfies the ∃x ∈ D, p(x) but neither Homer nor Bart satisfy q(x)

24. For each set of sentences, define the domain X , the value of a ∈ X (for part b), and the predicates A(x) and
B(x) such that the last sentence is false and the other sentences are true.

(a)

(T ) ∀x ∈ X,A(x)→ B(x)
(F ) ∃x ∈ X,A(x) ∧B(x)

Soln:
Let X be {1} and A(1)=F and B(1)=T

(b)

(T ) ∀x ∈ X,A(x)→ B(x)
(T ) ¬A(a)
(F ) ¬B(a)

Soln:
Let X = {a } and A(a) = F, B(a)=T
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25. (10 marks) Let p(n) and q(n) represent the following predicates:

p(n) : n is odd q(n) : n2 is odd

where the domain is the set of integers. Determine which of the following statements are logically equivalent to
each other.

Soln:
a,b,c,e,f,g are logically equivalent to each other. h,i are logically equivalent to each other.

(a) If the square of any integer is odd, then the integer is odd.
Soln:
∀n ∈ Z, q(n)→ p(n)

(b) ∀n ∈ Z, (p(n) is necessary for q(n)).
Soln:
∀n ∈ Z, q(n)→ p(n)

(c) The square of any odd integer is odd.
Soln:
∀n ∈ Z, q(n)→ p(n)

(d) There are some integers whose squares are odd.
Soln:
∃n ∈ Z, q(n)

(e) Given any integer whose square is odd, that integer is likewise odd.
Soln:
∀n ∈ Z, q(n)→ p(n)

(f) ∀n ∈ Z,¬p(n)→ ¬q(n).
Soln:
∀n ∈ Z, q(n)→ p(n)

(g) Every integer with an odd square is odd.
Soln:
∀n ∈ Z, q(n)→ p(n)

(h) Every integer with an even square is even.
Soln:
∀n ∈ Z,¬q(n)→ ¬p(n)

(i) ∀n ∈ Z, p(n) is sufficient for q(n).
Soln:
∀n ∈ Z, p(n)→ q(n)

26. (a) Determine whether ∃ can be factored from an implication. In other words, is

∃x ∈ X, (p(x)→ q(x)) ⇔ (∃x ∈ X, p(x))→ (∃x ∈ X, q(x))

true?
Soln:
Consider → of the statement: i.e. ∃x ∈ X, (p(x) → q(x)) → (∃x ∈ X, p(x)) → (∃x ∈ X, q(x)).
Suppose we let the domain X = {x1, x2}, p(x1) = false, p(x2) = true and q(x1) = q(x2) = false. Then the
LHS is true but the RHS is false. Hence this is false.
And for ←: i.e. ∃x ∈ X, (p(x) → q(x)) ← (∃x ∈ X, p(x)) → (∃x ∈ X, q(x)). Suppose we now let
the domain D be empty, p and q be any predicates. Then since there’s no p, the RHS is true. But there’s
nothing in D, so there can’t be an example for the LHS. Hence this is false also.
Combining the 2 results mean that the answer to this statement is false.
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(b) Consider

∀y ∈ D,∃x ∈ D, p(x, y)→ ∃x ∈ D,∀y ∈ D, p(x, y).

i. Define D and p(x, y) such that the statement is true.
Soln:
Suppose we let the domain be 1 and let p(x, y) be x ≤ y. Then the left side is true and the right side
is true. Therefore the statement is true.

ii. Define D and p(x, y) such that the statement is false.
Soln:
Suppose we let the domain be Z and let p(x, y) be x < y. Then the left side is true and the right side
is false. Therefore the statement is false.

Note: there are other solutions.

(c) Consider the following statement:

(∀x ∈ X, p(x)→ ¬∀x ∈ X, q(x))↔ (∃x ∈ X,∀y ∈ X(p(x)→ ¬q(y)))

HINT: You may need to use the logical equivalence laws defined in class to simplify the statement first. If
so, show and justify each step.
Soln:
Consider the simplication of the LHS. We can say that

∀x ∈ X, p(x)→ ¬(∀x ∈ X, q(x))
⇔ ¬(∀x ∈ X, p(x)) ∨ ¬(∀y ∈ X, q(y))
⇔ ∃x ∈ X,¬p(x) ∨ ∃y ∈ X,¬q(y)

and for the RHS we notice that
∃x ∈ X,∀y ∈ X, (p(x)→ ¬q(y))
⇔ ∃x ∈ X,∀y ∈ X, (¬p(x) ∨ ¬q(y)
⇔ ∃x ∈ X,¬p(x) ∨ ∀y ∈ X,¬q(y)

i. Define D, p(x) and q(y) such that the statement is true.
Soln:
Suppose we let the domain D = {3}, let p(x) = x is odd, and q(x) = x is even. Then the LHS says,
if every element of the domain, namely 3, is odd, then there exists some number (3) that is not odd,
(since the only element in the domain is 3). The RHS says, if there exists a number that is odd (namely
3), then all numbers are not even (i.e. 3). Hence the statement is true.

ii. Define D, p(x) and q(y) such that the statement is false.
Soln:
Suppose we let the domain D = {3, 9}, let p(x) = x is odd, and q(x) = x is prime. Now the LHS says,
if every element of the domain (3 and 9) is odd then there exists some element of the the domain that
is not prime (9), which is true. The RHS says, if there exists an odd number in the domain (3 or 9),
then all elements of the domain are not prime, which is false since 3 is a prime! Hence the statement
is false. Note: there are other solutions.

27. (15 marks) Consider the statement

(1) A number is rational if it can be written as a
b where a and b are integers.

(a) Define a domain and a set of predicates and rewrite the statement in precise symbolic notation. Soln:
Let the domain X be the set of all numbers. Let D(a, b, c) = c is a number that can be written as a

b ,
N(a)= a is a natural number, R(a) = a is a rational number. Symbolic notation: ∃a ∈ X,∃b ∈ X,∀c ∈
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X, (N(a) ∧N(b) ∧D(a, b, c))→ R(c).

Note: This is just one of many solutions.

(b) Rewrite (1) using

• “sufficient”
Soln:
It is sufficient that a number can be written as a

b where a and b are integers.
• “only if”

Soln:
A number can be written as a

b where a and b are integers only if that number is rational.
• “is necessary”

Soln:
It is necessary that a number is rational for it to be written as a

b where a and b are integers.
• conjunction instead of implication.

Soln:
It is not the case that, a number can be written as a

b where a and b are integers, and that number is not
rational.

(c) Write the converse and the contrapositive of the converse of (1). Is the converse true? if so, how can we
alter (1) to reflect this. If not, give a counter example.
Soln:
Converse of (1): If a number is rational then that number can be written as a

b where a and b are integers.

Contrapositive of the converse (1): It is not the case that, if a number can be written as a
b where a and b

are integers, then that number isn’t a rational.

Hence the converse is true. Thus we can alter (1) to:

A number is rational if and only if it can be written as a
b where a and b are integers.
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Sequences

1. Consider the following sentences about sequences, a0, a1, a2, . . ., of integers:

(S1) ∃j ∈ N,∀i ∈ N, i 6= j → ai ≥ aj

(S2) ∃j ∈ N,∀i ∈ N, i > j → ai < ai+1 ∧ i < j → ai ≥ ai+1

(S3) ∀j ∈ N, j > 0→ (a2j = −a4j ∧ a2j+1 = −a2j+3)

(a) For each sentence describe in clear, precise English the property that a sequence must have to satisfy the
sentence.
Soln:

(S1) There is a smallest element (or more than one).
(S2) The sequence is non-increasing until some element aj and then increasing from aj onwards.
(S3) The odd elements have the same magnitude and alternate in sign and the even elements are the negative

of he element at twice the index.

(b) For each sentence, give the negation of the sentence.
Soln:

(S1)

¬∃j ∈ N,∀i ∈ N, i 6= j → ai ≥ aj

⇔ ∀j ∈ N,∃i ∈ N,¬(¬i 6= j ∨ ai ≥ aj)
⇔ ∀j ∈ N,∃i ∈ N, i 6= j ∧ ai < aj

(S2)

¬∃j ∈ N,∀i ∈ N, i > j → ai < ai+1 ∧ i < j → ai ≥ ai+1

⇔ ∀j ∈ N,∃i ∈ N,¬[(¬i > j ∨ ai < ai+1) ∧ (¬i < j ∨ ai ≥ ai+1)]
⇔ ∀j ∈ N,∃i ∈ N,¬(¬i > j ∨ ai < ai+1) ∨ ¬(¬i < j ∨ ai ≥ ai+1)
⇔ ∀j ∈ N,∃i ∈ N, (i > j ∧ ai ≥ ai+1) ∨ (i < j ∧ ai < ai+1)

(S3)

¬∀j ∈ N, j > 0→ (a2j = −a4j ∧ a2j+1 = −a2j+3)
⇔ ∃j ∈ N,¬(¬j > 0 ∨ (a2j = −a4j ∧ a2j+1 = −a2j+3))
⇔ ∃j ∈ N, j > 0 ∧ ¬(a2j = −a4j ∧ a2j+1 = −a2j+3)
⇔ ∃j ∈ N, j > 0 ∧ (a2j 6= −a4j ∨ a2j+1 6= −a2j+3)

(c) For each of the following sequences, determine whether the sequence satisfies each of the (S1), (S2) and
(S3). Justify your claim in English using an example or counter example whenever possible.
(A1) 10, 9, 8, 7, 9, 11, 13, 15, . . .

Soln:
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(S1) Since there exists a j = 3 such that aj is the minimum element, (A1) satisfies (S1)
(S2) Let i = 3, then the sequence is non-increasing (actually decreasing) until ai and increasing thereafter.
(S3) Since there exists a j = 2 such that a2j 6= −a4j A1 does not satisfy S3.

(A2) −1, 2, 1,−2,−1, 2, 1,−2, . . .
Soln:

(S1) Since there exists a j = 3 such that aj is the minimum element, (A2) satisfies (S1)
(S2) To show that (A2) does not satisfy S2, we consider the negation of S2. Notice that for any j if

aj = −1 then pick i = j + 2, so i > j ∧ ai ≥ ai+1, if aj = 1, pick i = j + 3 so i > j ∧ ai ≥ ai+1.
Similarly for aj = 2 and aj = −2.

(S3) Notice that this does not satisfy S3. We can see this by picking j = 2. Then a2j = −1 and a4j = −1.
This satisfies the negation of (S3).

(A3) 1, 2, 4, 8, 16, 32, . . .

Soln:

(S1) Since there exists a j = 0 such that aj is the minimum element, (A3) satisfies (S1)
(S2) To show that (A3) does satisfy S2, consider j = 0. Then the right side of ∧ is always true and the left

side is true because the sequence is increasing.
(S3) Since (A3) does not have negative numbers it immediately satisfies the negation of (S3).

(d) Is there a sequence that satisfies all three of (S1), (S2) and (S3). If yes, give the sequence, if not, then
explain why it is impossible.
Soln:
Not possible. To satisfy (S2) we need the sequence to increasing at some point. However, (S3) requires
the sequence to alternate between positive and negative numbers. Therefore to satisfy (S3), there is never
a value of j such that the sequence is increasing from aj onwards.

2. (20 marks) Consider these sentences about sequence of integers a0, a1, a2, . . ..

(S1) ∀i ∈ N,∀j ∈ N, (j > i)→ (aj ≥ 2ai) where each ai ∈ N.

(S2) ∀i ∈ N, (i > 2)→ (ai − ai−1 ≤ ai−1 − ai−2) where each ai ∈ Z.

(S3) ∀i ∈ N,∃j ∈ N, (i < j → ai < ai+1) ∧ (j < i→ ai > ai+1) where each ai ∈ Z.

Consider these sequences and answer the questions below.

(A) -10 -9 -8 -5 -2 0 100 99 97 96 95 94 . . .

(B) 40 20 10 5 1 0 0 0 0 0 0 0 . . .

(C) 0 2 5 11 23 47 100 200 400 900. . .

(a) For each sentence describe the sequences that satisfy it.
Soln:
S(1) means: ”every element in the sequence is at least twice as large as every previous elements in the
sequence.”
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Soln:
S(2) means: ”for every three consecutive elements of the sequence, excluding the 1st element of the se-
quence, the difference between the first 2 of the 3 consecutive elements is greater or equal to the difference
between the last 2 of this 3 consecutive elements.”

(b) For each sentence express it’s negation moving the negation as far in as possible.
Soln:
¬S(1) : ¬(∀i ∈ N,∀j ∈ N, (j > i)→ (aj ≥ 2ai))
⇔ ∃i ∈ N,∃j ∈ N,¬((j > i)→ (aj ≥ 2ai))
⇔ ∃i ∈ N,∃j ∈ N,¬((j > i) ∧ ¬(aj ≥ 2ai)
⇔ ∃i ∈ N,∃j ∈ N, (j ≤ i) ∧ (aj < 2ai)
Soln:
¬S(2) :
¬(∀i ∈ N, (i > 2)→ (ai − ai−1 ≤ ai−1 − ai−2))
⇔ ∃i ∈ N,¬((i > 2)→ (ai − ai−1 ≤ ai−1 − ai−2))
⇔ ∃i ∈ N,¬(i > 2) ∧ ¬(ai − ai−1 ≤ ai−1 − ai−2)
⇔ ∃i ∈ N, (i ≤ 2) ∧ (ai − ai−1 > ai−1 − ai−2)

(c) For each sentence determine whether the sentence is true for each of (A), (B) and (C). If it is true, explain
why and if it is not true, show where the sequence fails.
Soln:
S(1) is false for (A), i=6 and j=7 is a counterexample.

S(1) is false for (B), i=2 and j=1 is a counterexample.

S(1) is true for (C), since every element is at least twice as large as a previous.

S(2) is false for (A), i=3 is a counterexample.

S(2) is false for (B), i=3 is a counterexample.

S(2) is false for (C), i=3 is a counterexample.

3. Consider the following statements about sequences of natural numbers a0, a1, a2, . . . :

(S3) ∀i ∈ N ∃j ∈ N ∀k ∈ N, k > j→ ak 6= ai

(S4) ∀i ∈ N ∃j ∈ N, j > i ∧ (aj > ai ∨ aj < ai)

(S5) ∀i ∈ N
((
∃j ∈ N, j > i ∧ aj > ai

)
∧
(
∃j ∈ N, j > i ∧ aj < ai

))
And the following sequences:

(A1) 1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6, . . .

(A2) 1, 2, 4, 8, 16, 32, 64, 128, 256, . . .

(A3) 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 1, . . .

For each sequence and each statement, state whether the statement is true or false for the sequence and justify
briefly.
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Solution: First, let us express the meaning of each statement in English.
The meaning of (S3) is: “for every number ai in the sequence, there is some point (j) after which all
numbers are different from ai” (i.e., every number occurs a finite number of times in the sequence).
The meaning of (S4) is: “for every number ai in the sequence, there is some number later in the sequence
that is either less than or greater than ai”.
The meaning of (S5) is: “for every number ai in the sequence, there is some later number that is greater
than ai and there is some later number that is smaller than ai” (i.e., every number in the sequence is
eventually followed by a greater number and also by another smaller number).

(S3) for (A1): From the meaning above, (S3) is true for (A1) since every number occurs in (A1) at most three
times.

(S3) for (A2): From the meaning above, (S3) is true for (A2) since every number in (A2) is unique.

(S3) for (A3): From the meaning above, (S3) is false for (A3) since the number 1 occurs infinitely often in
(A1).

(S4) for (A1): From the meaning above, (S4) is true for (A1) since every number in (A1) is eventually fol-
lowed by a greater number.

(S4) for (A2): From the meaning above, (S4) is true for (A2) since (A2) is strictly increasing.

(S4) for (A3): From the meaning above, (S4) is false for (A3) since (A3) ends with an infinite run of 1’s.

(S5) for (A1): From the meaning above, (S5) is false for (A1) since there is no number less than 1 in the
sequence (so (S5) fails for i = 0).

(S5) for (A2): From the meaning above, (S5) is false for (A2) since there is no number less than 1 in the
sequence (so (S5) fails for i = 0).

(S5) for (A3): From the meaning above, (S5) is false for (A3) since there is no number less than 1 in the
sequence (so (S5) fails for i = 9).

4. (a) Proof that ∃i ∈ N,∀j ∈ N, aj ≤ i→ j < i for the sequence ∀n ∈ N, an = n2.
Let i = 2,

Let j ∈ N,
Suppose aj ≤ i = 2

then aj = j2 ≤ 2
So j ≤

√
2 and since j ∈ N, j ≤ 1

So j < 2 = i
aj ≤ i→ j < i

Since h ∈ N and j arbitrary, ∀j ∈ N, aj ≤ i→ j < i
Since i = 2, i ∈ N, ∃i ∈ N,∀jN, aj ≤ i→ j < i

(b) Disprove ∃i ∈ N,∀j ∈ N, j > i→ aj = ai for the sequence ∀n ∈ N, an = bn/2c.
First negate the sentence:

∀i ∈ N,∃j ∈ N, j > i ∧ aj 6= ai

Let i ∈ N,
Case 1: i = 2k for some k,

Let j = i+ 2
Then j > i and aj = k and ai = k + 1
So aj 6= ai

Since j = i+ 2 ∈ N,∃j ∈ N, j > i ∧ aj 6= ai

Case 2: i = 2k + 1 for some k ∈ N
Let j = i+ 1

Then j > i and aj = k and ai = 2(k + 1)/2 = k + 1
So aj 6= ai
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Since j = i+ 1 ∈ N,∃j ∈ N, j > i ∧ aj 6= ai

Since i = 2k or i = 2k + 1 for some k ∈ N,
∃j ∈ N, j > i ∧ aj 6= ai

Since i ∈ N, ∀i ∈ N,∃j ∈ N, j > i ∧ aj 6= ai

(c) Proof that ∃i ∈ N,∀j ∈ N, aj 6= ai → ∃k ∈ N, k 6= ak ∧ ak > aj for the sequence:

0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, . . .

Let i = 3
Let j ∈ N

Suppose aj 6= ai

Then let k = j + 5
Since i = 3, ai = 3 and aj 6= 3
Since k = j + 5, k ≥ 5 and k 6= ak (since ak < 4)
By definition of an and since k = j + 5, ak = 1 if aj = 0, ak = 2 if aj = 1 and ak = 3 if

aj = 2
Therefore, ak > aj .
So k 6= ak ∧ ak > aj

Since k = j + 5 ∈ N, ∃k ∈ N, k 6= ak ∧ ak > aj

So aj 6= ai → ∃k ∈ N, k 6= ak ∧ ak > aj

Since j ∈ N
∀j ∈ Naj 6= ai → ∃k ∈ N, k 6= ak ∧ ak > aj

Since i = 3 ∈ N, ∃i ∈ N,∀j ∈ Naj 6= ai → ∃k ∈ N, k 6= ak ∧ ak > aj
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General Proofs

1. Let N be the natural numbers {0, 1, 2, . . .}, Z be the integers {. . . ,−2,−1, 0, 1, 2, . . .}, and R be the real num-
bers. For x ∈ R, define r(x) as: ∃m ∈ N,∃n ∈ N, (n > 0) ∧ (x = m/n). You may assume ¬r(

√
2).

Using our structured proof form, prove or disprove the following:

(a) ∀x ∈ R,∀y ∈ R, (r(x) ∧ r(y))⇒ r(x+ y).
Sample solution: The statement is true.

Let x ∈ R. Let y ∈ R.
Assume r(x) ∧ r(y).

Then ∃mx, nx ∈ N, nx > 0 ∧ x = mx/nx. (by definition of r(x)).
Then ∃my, ny ∈ N, ny > 0 ∧ y = my/ny . (by definition of r(y)).
Let mx+y = nymx + nxmy . Let nx+y = nxny .

Then mx+y ∈ N. (since natural numbers are closed under multiplication and
addition).
Then nx+y ∈ N and nx+y 6= 0. (since natural numbers are closed under
multiplication, and the product of non-zero natural numbers is not zero).
Also x+ y = mx+y/nx+y . (definition of addition of fractions).

Hence ∃m ∈ N, ∃n ∈ N n > 0 and x+ y = m/n.
Thus r(x+ y). (by definition of r(x+ y)).

So (r(x) ∧ r(y))⇒ r(x+ y).
Since x and y are arbitrary elements of R, ∀x ∈ R, ∀y ∈ R, (r(x) ∧ r(y))⇒ r(x+ y).

(b) The converse of (a)
Sample solution: The statement is false.

Let x =
√

2. Let y = 2−
√

2.
Then x ∈ R. (real numbers include roots of positive reals).
Then y ∈ R. (real numbers are closed under subtraction).
Let m = 2. Let n = 1.

Then m ∈ N.
Then n ∈ N and n 6= 0.
Also x+ y = 2/1. (since

√
2 + 2−

√
2 = 2).

Hence ∃m ∈ N and ∃n ∈ N, n 6= 0 and x+ y = m/n.
So r(x+ y) and ¬r(x). (by definition of r(x+ y), and given assumption that ¬r(

√
2).

Thus r(x+ y) ∧ ¬(r(x) ∧ r(y)). (since ¬r(x) implies ¬r(x) ∨ ¬r(y)).
Thus r(x+ y) 6⇒ (r(x) ∧ r(y)). (by negation of implication).

Thus ∃x ∈ R, ∃y ∈ R, r(x+ y) 6⇒ (r(x) ∧ r(y)).

(c) ∀x ∈ R,∀y ∈ R, (r(x) ∧ r(y))⇒ r(xy).
Sample solution: The statement is true.

Let x ∈ R. Let y ∈ R.
Assume r(x) ∧ r(y)

Then ∃mx, nx ∈ N, nx > 0 ∧ x = mx/nx. (by definition of r(x)).
Then ∃my, ny ∈ N, ny > 0 ∧ y = my/ny . (by definition of r(y)).
Let mxy = mxmy . Let nxy = nxny

Then mxy ∈ N. (natural numbers are closed under multiplication).
Then nxy ∈ N and nxy 6= 0. (natural numbers are closed under multiplication
and the product of non-zero natural numbers is non-zero).
Also, xy = mxy/nxy .
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Hence ∃m ∈ N, ∃n ∈ N, n 6= 0 and xy = m/n.
Thus r(xy). (by definition of r(xy)).

So (r(x) ∧ r(y))⇒ r(xy).
Since x and y are arbitrary elements of R, ∀x ∈ R, ∀y ∈ R, (r(x) ∧ r(y))⇒ r(xy).

(d) The converse of (c)
Sample solution: The statement is false

Let x =
√

2. Let y =
√

2.
Then x ∈ R. (real numbers include roots of positive reals).
Then y ∈ R. (real numbers include roots of positive reals).
Let m = 2. Let n = 1.

Then m ∈ N.
Then n ∈ N and n 6= 0.
Also xy = m/n. (since

√
2
2

= 2).
Hence ∃m ∈ N, n ∈ N, n 6= 0 and xy = m/n.
So r(xy) and ¬r(x). (definition of r(xy) and given assumption that ¬r(

√
2)).

So r(xy) and ¬(r(x) ∧ r(y)). (at least one of r(x), r(y) is false).
So r(xy) 6⇒ (r(x) ∧ r(y)). (negation of implication)

Thus ∃x ∈ R,∃y ∈ R, r(xy) 6⇒ (r(x) ∧ r(y)).

2. For x ∈ R, define |x| by

|x| =

{
−x, x < 0
x, x ≥ 0

Using our structured proof form, prove or disprove the following. You may assume that if t > 0, then ∀x ∈
R,∀y ∈ R, x > y ⇒ tx > ty.

(a) ∀x ∈ R,∀y ∈ R, |x||y| = |xy|.
Sample solution: The statement is true.

Let x ∈ R. Let y ∈ R.
Case 1, x < 0 and y < 0.

Then |x| = −x and |y| = −y. (definition of |x| and |y|).
So |x||y| = (−x)(−y) = xy. (since (−1)2 = 1).
Also xy > 0. (product of negative numbers is positive).
So xy = |xy|. (definition of |xy| when xy ≥ 0).
Hence |x||y| = |xy|.

Case 2, x < 0 and y ≥ 0.
Then |x| = −x and |y| = y. (definition of |x| and |y|).
So |x||y| = −xy.
Also xy ≤ 0. (product of a negative and a non-negative number is either 0 or
negative).
So either |xy| = −xy (by the definition of |xy|when xy < 0), or |xy| = xy = −xy
(by the definition of |xy| when xy = 0).
Thus |x||y| = |xy|.

Case 3, x ≥ 0 and y < 0.
Then |x| = x and |y| = −y. (definition of |x| and |y|).
So |x||y| = −xy.
Also xy ≤ 0. (product of a non-negative number with a negative number is non-
positive).
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So either |xy| = −xy (by the definition of |xy| for xy < 0) or |xy| = xy = −xy
(by the definition of |xy| for xy = 0).
So |x||y| = |xy|.

Case 4, x ≥ 0 and y ≥ 0.
Then |x| = x and |y| = y. (definition of |x| and |y|).
Also xy ≥ 0. (product of non-negative numbers is non-negative).
So |xy| = xy. (definition of |xy|).
Thus |x||y| = |xy|.

In each case |x||y| = |xy|, and these cover all possibilities. So |x||y| = |xy|.
Since x and y are arbitrary elements of R, ∀x ∈ R, ∀y ∈ R, |x||y| = |xy|.

(b) ∀x1 ∈ R,∀x2 ∈ R,∀y1 ∈ R,∀y2 ∈ R, |x1| > |x2| ∧ |y1| > |y2| ⇒ |x1y1| > |x2y2|.
Sample solution: The statement is true.

Let x1 ∈ R. Let x2 ∈ R. Let y1 ∈ R. Let y2 ∈ R.
Assume |x1| > |x2| ∧ |y1| > |y2|.

Let t = |y1|.
Then t ∈ R. (definition of |y1|).
Then t > |y2|. (Since t = |y1| > |y2|, by assumption).
Also |y2| ≥ 0. (Since either |y2| = −y2 > 0 if y2 is negative, or |y2| = y2 ≥ 0 if
y2 is non-negative, by definition of |y2|.
So t > 0. (Since t > |y − 2| ≥ 0).
Then t|x1| > t|x2|. (Since |x1| > |x2|, by assumption, and the result we are
allowed to assume for this question).

So |x1||y1| > |x2||y1|. (by construction of t and commutativity of multiplication)
Let t = |x2|.

Then t ∈ R. (by definition of |x2|.
Also t ≥ 0. (since either |x2| = −x2 > 0 if x2 is negative, or |x2| = x2 ≥ 0 if x2

is non-negative, by definition of |x2|.).
So t|y1| ≥ t|y2|. (since either t|y1| > t|y2|, by the result we are allowed to assume
for this question when t > 0, or t|y1| = t|y2| when t = 0).

So |x2||y1| ≥ |x2||y2|. (by definition of t)
So |x1||y1| > |x2||y2|. (Since |x1||y1| > |x2||y1| and |x2||y1| ≥ |x2||y2|.
So |x1y1| > |x2y2|. (Since |x1||y1| = |x1y1| and |x2||y2| = |x2y2|, by part (a)).

So |x1| > |x2| ∧ |y1| > |y2| ⇒ |x1y1| > |x2y2|.
Since x1, x2, y1, y2 are arbitrary elements of R, ∀x1 ∈ R, ∀y1 ∈ R, ∀y2 ∈ R, (|x1| > |x2| ∧
|y1| > |y2|)⇒ |x1y1| > |x2y2|.

3. Let R+ be the set of positive real numbers. Use our structured proof form to prove or disprove:

(a)
∀x ∈ R,∀y ∈ R,∃δ ∈ R+,∀ε ∈ R+, |x− y| < δ ⇒ |x2 − y2| < ε.

Sample solution: The statement is (strangely) true.
Let x ∈ R. Let y ∈ R.

Case 1, x = y

Let δ = 17.
Then δ ∈ R+

Let ε ∈ R+.
Then |x2 − y2| = 0 < ε. (since x = y and ε is positive).
So |x − y| < δ ⇒ |x2 − y2| < ε. (since the consequent is true, the entire
implication is true).

25



Since ε is an arbitrary element of R+, ∀ε ∈ R+, |x− y| < δ⇒ |x2 − y2| < ε.
So ∃δ ∈ R+, ∀ε ∈ R+, |x− y| < δ⇒ |x2 − y2| < ε.

Case 2, x 6= y.
Then |x−y| > 0. (since x−y 6= 0 and either |x−y| = x−y, if x > y, or |x−y| = y−x,
if y > x).
Let δ = |x− y|/2.

Then δ ∈ R+. (since δ is half of a positive number).
Also, |x− y| > δ. (since |x− y| − δ = δ > 0).
Let ε ∈ R.

Then ¬(|x− y| < δ). (since |x− y| > δ).
So |x− y| < δ⇒ |x2 − y2| < ε. (since a false antecedent implies anything).

Since ε is an arbitrary element of R+, ∀ε ∈ R+, |x− y| < δ⇒ |x2 − y2| < ε.
So ∃δ ∈ R+, ∀ε ∈ R+, |x− y| < δ⇒ |x2 − y2| < ε.

In either case ∃δ ∈ R+, ∀ε ∈ R+, |x − y| < δ ⇒ |x2 − y2| < ε, and these cases cover all
possibilities.
So ∃δ ∈ R+, ∀ε ∈ R+, |x− y| < δ⇒ |x2 − y2| < ε.

Since x and y are arbitrary elements of R, ∀x ∈ R, ∀y ∈ R, ∃δ ∈ R+, ∀ε ∈ R+, |x − y| < δ ⇒
|x2 − y2| < ε.

(b)
∀x ∈ R,∀y ∈ R,∀ε ∈ R+,∃δ ∈ R+, |x− y| < δ ⇒ |x2 − y2| < ε.

Sample solution: The claim is true.
Let x ∈ R. Let y ∈ R. Let ε ∈ R.

Case 1, x2 − y2 = 0.
Let δ = 1.

Then δ ∈ R+.
Assume |x− y| < δ.

Then |x2 − y2| < ε. (since ε ∈ R+)
So |x− y| < δ| ⇒ |x2 − y2| < ε.

So ∃δ ∈ R+, |x− y| < δ ⇒ |x2 − y2| < ε

Case 2, x2 − y2 6= 0
Then (x− y)(x+ y) 6= 0. (by factoring quadratic).
So (x− y) 6= 0 and (x+ y) 6= 0. (non-zero product has no zero factors).
Let δ = ε/(2|x+ y|).

Then δ ∈ R+. (since it ratio of positive numbers).
Assume |x− y| < δ.

Then |x2 − y2| = |x− y||x+ y|. (by part 2a).
So |x2 − y2| < δ|x+ y|. (by assumption that |x− y| < δ).
So δ|x+ y| = [ε/(2|x+ y|)]× |x+ y|. (by construction of δ).
So |x2 − y2| < ε/2 < ε. (Since ε− ε/2 = ε/2 > 0).

So |x− y| < δ ⇒ |x2 − y2| < ε.
So ∃δ ∈ R+, |x− y| < δ ⇒ |x2 − y2| < ε.

In either case ∃δ ∈ R+, |x− y| < δ ⇒ |x2 − y2| < ε, and this covers all possibilities.

Since x and y are arbitrary elements of R, ∀x ∈ R,∀y ∈ R,∀ε ∈ R+,∃δ ∈ R+, |x−y| < δ ⇒ |x2−y2| <
ε
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(c)
∀ε ∈ R+,∃δ ∈ R+,∀x ∈ [−1, 1],∀y ∈ [−1, 1], |x− y| < δ ⇒ |x2 − y2| < ε.

Sample solution: The claim is true.
Let ε ∈ R+.

Let δ = ε/2.
Then δ ∈ R+. (since ε ∈ R+ means ε/2 is a ratio of positive real numbers).
Let x ∈ [−1, 1]. Let y ∈ [−1, 1].
Assume |x− y| < δ.

Then (x+ y) ∈ [−2, 2]. (Taking the maximum and minimum sums).
So |x+ y| ≤ 2. (Taking the maximum absolute value).
So |x− y||x+ y| ≤ |x− y|2.
So |x2 − y2| ≤ |x− y|2 < 2δ. (By the assumption that |x− y| < δ).
So |x2 − y2| < 2ε/2 = ε. (By the construction of ε).

So |x− y| < δ ⇒ |x2 − y2| < ε.
Since x and y are arbitrary elements of [−1, 1], ∀x ∈ [−1, 1],∀y ∈ [−1, 1], |x − y| <
δ ⇒ |x2 − y2| < ε.

So ∃δ ∈ R+,∀x ∈ [−1, 1],∀y ∈ [−1, 1], |x− y| < δ ⇒ |x2 − y2| < ε.

Since ε is an arbitrary element of R, ∀ε ∈ R+,∃δ ∈ R+,∀x ∈ [−1, 1],∀y ∈ [−1, 1], |x − y| < δ ⇒
|x2 − y2| < ε.

(d)
∀ε ∈ R+,∃δ ∈ R+,∀x ∈ R,∀y ∈ R, |x− y| < δ ⇒ |x2 − y2| < ε.

Sample solution: The claim is false, so I will prove its negation:

∃ε ∈ R+,∀δ ∈ R+,∃x ∈ R,∃y ∈ R, |x− y| < δ ∧ |x2 − y2| ≥ ε.

Let ε = 1.

Let δ ∈ R+.
Let x = 2/δ. Let y = x+ δ/2.

So |x− y| = δ/2 < δ. (since δ − δ/2 = δ/2 > 0).
So |x2 − y2| = |x− y||x+ y| = δ/2(2× 2/δ + δ/2) (by construction of x and y).
So |x2 − y2| = 2 + δ2/4 > ε. (Since ε = 1, and δ2/4 is positive).
So |x− y| < δ and |x2 − y2| > ε.

So ∃x ∈ R,∃y ∈ R, |x− y| < δ ∧ |x2 − y2| ≥ ε.
Since δ is an arbitrary element of R+, ∀δ ∈ R+,∃x ∈ R,∃y ∈ R, |x− y| < δ ∧ |x2 − y2| ≥ ε

So ∃ε ∈ R+,∀δ ∈ R+,∃x ∈ R,∃y ∈ R, |x− y| < δ ∧ |x2 − y2| ≥ ε

4. Suppose f and g are functions from R onto R. Consider the following statements:

S1 ∀x ∈ R,∀y ∈ R, (f(x) = f(y))⇒ (x = y).
S2 ∀x ∈ R,∀y ∈ R, (g(x) = g(y))⇒ (x = y).
S3 ∀x ∈ R,∀y ∈ R, (g(f(x)) = g(f(y)))⇒ (x = y).

Does (S1∧S2) imply S3? Prove your claim.

Sample solution: The claim is true.

Assume S1 ∧ S2
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So S1
So S2
Let x ∈ R. Let y ∈ R.
Assume g(f(x)) = g(f(y)).

Let x′ = f(x). Let y′ = f(y).
Then x′ ∈ R and y′ ∈ R. (by assumption that f and g are from R to R).
So x′ = y′. (By assumption of S2, since g(x′) = g(y′)).
So f(x) = f(y). (by construction of x′ and y′).
So x = y. (By assumption of S1, since f(x) = f(y)).

So g(f(x)) = g(f(y))⇒ x = y.
Since x and y are arbitrary elements of R, g(f(x)) = g(f(y))⇒ x = y.

Then S3. (by definition of S3).

Hence S1 ∧ S2⇒ S3.
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Loop Invariants

1. Consider the following algorithm to compute the factorial of a number n.

int FACTORIAL(int n)
int i = 1;
int f = 1;
while (i ≤ n)

f ← f × i;
i← i+ 1;

end while
return (f );

end FACTORIAL

(a) We will denote the values of i and f on the kth iteration of the loop by ik and fk. What are the values of
ik, fk, ik+1, fk+1.
Soln.
ik = k + 1, fk = k!, ik+1 = k + 2, fk+1 = (k + 1)!

(b) Fill in the blanks below to define a loop invariant for FACTORIAL. Note that k represents the iteration
number.

(LI) ∀k ∈ N, (ik = ∧ fk = ∧ ik ≤ n)→ (ik+1 = ∧ fk+1 = )

Soln.

(LI) ∀k ∈ N, (ik = k + 1 ∧ fk = k! ∧ ik ≤ n)→ (ik+1 = k + 2 ∧ fk+1 = (k + 1)!)

(c) Write a carefully structured proof that the loop invariant (LI) is true.
Soln.
Let k ∈ N

Suppose that (ik = k + 1 ∧ fk = k! ∧ ik ≤ n) is true
Then when we execute the code in the loop, f ← f × i, i← i+ 1.
Therefore fk+1 = fkik = k!(k + 1) = (k + 1)! and ik+1 = ik + 1 = k + 2.

Therefore (ik = k + 1 ∧ fk = k! ∧ ik ≤ n)→ (ik+1 = k + 2 ∧ fk+1 = (k + 1)!).
Since k was an arbitrary element of N, therefore
∀k ∈ N, (ik = k + 1 ∧ fk = k! ∧ ik ≤ n)→ (ik+1 = k + 2 ∧ fk+1 = (k + 1)!).
(15 marks - if did not use factorial in invariant, than max possible is 12)

2. Write a Java method addBinary, which takes two 1D boolean arrays of length n, called A and B.
A and B represent two n-digit binary numbers, where:

n = max{minimum number of digits needed to represent the first binary number,
minimum number of digits needed to represent second the binary number}.

addBinary adds the two numbers together, and returns the result in a boolean array (the length of the array
should be equal to the minimum number of digits needed to represent the result) .

If one of the numbers has fewer digits than the other, then you may assume that it is padded with 0s (i.e., there
are falses in front of the first true). For example, you may assume that the arrays used to add 1101 and 10
would be:

boolean[] A = {true, true, false true};
boolean[] B = {false, false, true, false};
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Comment your code. Do not import any Java packages. You may assume that A and B are not null, and that
A and B are both positive (non-zero) numbers.

Solution:

public boolean[] addBinary(boolean[] A, boolean[] B) {
boolean[] result = new boolean[A.length + 1];
boolean C = false;
boolean flag = false;

for(int i = A.length - 1; i >= 0 ; i--) {
if ((A[i] && B[i] && !C) || (A[i] && !B[i] && C) || (!A[i] && B[i] && C)) {

C = true;
result[i+1] = false;
flag = false;

} else if (A[i] || B[i] || C){
C = false;
result[i+1] = true;
flag = true;

} else {
C = false;
result[i+1] = false;
flag = true;

}
}
result[0] = C;

boolean temp[] = new boolean[A.length];

// If n+1st digit is not necessary, remove it.
if(flag) {

for(int i = 0; i < A.length; i++) {
temp[i] = result[i+1];

}
return temp;

} else {
return result;

}
}

3. Let A be a 1D array of n natural numbers, and consider the following pseudocode, with the precondition,
postcondition and loop invariants inserted as comments:

//pre-condition: ∀k ∈ N, 0 ≤ k < n→ 0 ≤ A[k]
j = 0
// Outer loop invariant: ∀s ∈ N, 0 < j ≤ s < n→ 0 ≤ A[0] ≤ A[1] ≤ ... ≤ A[j − 1] ≤ A[s]
// Outer loop description: the first j elements are sorted in ascending order,
// and the jth element is less than or equal to any element between the j+1st and the nth element.
while(j < n){
imin = j
k = j + 1
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// Inner loop invariant: ∀r ∈ N, j ≤ r < k → A[imin] ≤ A[r]
// Inner loop desciption: finding smallest element between the j+1st and the nth element.
while(k < n){

if(A[k] < A[imin]){
imin = k
}
k + +

} //end of inner loop
temp = A[j]
A[j] = A[imin]
A[imin] = temp
j + +

} //end of outer loop
//post-condition: ∀j ∈ N,∀k ∈ N, 0 ≤ j < k < n→ A[j] ≤ A[k]

(a) Prove that the outer loop invariant is true at the start of the first iteration of the outer loop. Soln:
From the first assignment statement before the loop, we know j = 0. Since j = 0, the outer loop invariant
is vacuously true.

(b) Prove that if the outer loop invariant is true at the start of an iteration of the outer loop and the outer loop
is executed, then the inner loop invariant is true at the start of the first iteration of the inner loop.
Soln:
Suppose the outer loop invariant is true:
∀s ∈ N, j ≤ s ≤ n→ 0 ≤ A[0] ≤ ...A[j − 1] ≤ A[s]

Since there is an iteration of the outer loop, j < n.
From the body of the outer loop, imin = j and k = j + 1.
The inner loop invariant becomes: ∀r ∈ N, j ≤ r < j + 1→ A[j] ≤ A[r]

Let r ∈ N
Suppose j ≤ r < j + 1.

So r = j
Thus A[j] ≤ A[r]

Therefore, j ≤ r < j + 1→ A[j] ≤ A[r]
Since r is an arbitrary natural number, ∀r ∈ N, j ≤ r < j + 1→ A[j] ≤ A[r]

(c) Prove that if the inner loop invariant is true at the start of any iteration of the inner loop, then it is true at
the end of that iteration. Soln:
Let j′, k′, r′, imin′ be the values of j, k, r, imin at the start of an iteration of the inner loop, and j′′, k′′, r′′, imin′′

be the values at the end of the iteration.

Suppose the inner loop invariant is true at the start of an iteration of the inner loop:
∀r ∈ N, j′ ≤ r < k′ → A[imin] ≤ A[r]

Let r ∈ N
Suppose j′′ ≤ r < k′′

k′′ = k′ + 1 (by the last line of the inner loop)
j′′ = j′ (since j′ is unchanged in the inner loop)
Thus j′ ≤ r < (k′ + 1), so j ≤ r ≤ k′
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Case 1: j ≤ r < k′

Since ∀r ∈ N, j′ ≤ r < k′ → A[imin′] ≤ A[r] and j′ ≤ r < k′, then A[imin′] ≤ A[r]
Case 1a: A[k′] < A[imin′]

So imin′′ = k′

Thus A[imin′′] ≤ A[r] (since A[k′] < A[imin′] and A[imin′] ≤ A[r])
Case 1b: A[k′] ≥ A[imin′]

So imin′′ = imin′

Thus A[imin′′] ≤ A[r] (since A[imin′] ≤ A[r])
Case 2: j ≤ r ∧ r = k′

Case 2a: A[k′] < A[imin′]
So imin′′ = k′, thus imin′′ = r (since r = k′)
Therefore, A[imin′′] ≤ A[r]

Case 2b: A[k′] ≥ A[imin′]
Therefore, A[imin′′] ≤ A[r], (since k′ = r)

In all cases, A[imin′′] ≤ A[r]
Therefore, j′′ ≤ r < k′′ → A[imin′′] ≤ A[r]

Since r is an arbitrary natural number, ∀r ∈ N, j′′ ≤ r < k′′ → A[imin′′] ≤ A[r]

(d) Prove that if the outer loop invariant is true when the outer loop terminates, then the post-condition is true.
Soln:
When the outer loop terminates j = n and the postcondition is vacuously true.

4. Consider the following algorithm (the lines starting with “//” are comments that will not be executed).

// precondition: a ∈ N, b ∈ N
m := a
// loop invariant: m ≥ 0 ∧ ∃x ∈ N, a = bx+m
while m ≥ b do

m := m− b
end while
// postcondition: m = a mod b, i.e., 0 ≤ m < b ∧ ∃x ∈ N, a = bx+m.

(a) Prove that the loop invariant is true before the first iteration of the loop.

SOLN:
Before the loop starts, m = a so m ≥ 0 (since a ∈ N by the precondition). Also, a = m = 0b + m so

∃x ∈ N, a = bx+m.

(b) Let m′ denote the value of m at the end of some iteration of the loop and assume that the loop invariant is
true for m′. Furthermore, let x′ denote the value that makes a = bx′ +m′ true.
Prove that the loop invariant remains true at the end of the next iteration of the loop, if there is such an
iteration (use m′′ to denote the value of m at the end of the next iteration).

SOLN:
Suppose that m′ ≥ 0 ∧ a = bx′ +m′, and that the loop body executes once more.

Then, m′′ = m′− b (from the loop body), and since m′ ≥ b (from the loop condition), m′′ = m′− b ≥ 0.
Let x′′ = x′ + 1. Since m′′ = m′ − b iff m′′ + b = m′,

a = bx′ +m′ = bx′ + (m′′ + b) = b(x′ + 1) +m′′ = bx′′ +m′′

so ∃x ∈ N, a = bx+m′′.
Hence, m′′ ≥ 0 ∧ ∃x ∈ N, a = bx+m′′.
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(c) Prove that the postcondition is true after the last iteration of the loop. (You may assume that the loop
invariant is true at the end of every iteration of the loop.)

SOLN:
At the end of the loop, we know that m ≥ 0 ∧ ∃x ∈ N, a = bx+m (from the loop invariant). Moveover,

the loop will stop when the loop condition becomes false, which allows us to conclude m < b (from the
negation of the loop condition). Hence, 0 ≤ m < b ∧ ∃x ∈ N, x = bx+m.

5. Sample solution: The statement is false. First I put the statement into precise form, and then prove its negation.

The statement to be disproved is: ∀x′, y′, z′, x′′, y′′, z′′,m, n ∈ Z, if z′ = mn − x′y′, and (x′, y′, z′) are the
values of (x, y, z) before the loop iteration and (x′′, y′′, z′′) are the values of (x, y, z) after the loop iteration,
then z′′ = mn− x′′y′′.
The negation of this statement is: ∃x′, y′, z′, x′′, y′′, z′′,m, n ∈ Z, z′ = mn − x′y′ ∧ (x′, y′, z′) are the
values of (x, y, z) before the loop iteration, (x′′, y′′, z′′) are the values of (x, y, z) after the loop iteration ∧
z′′ 6= mn− x′′y′′. I now prove the negation.

Let x′ = m = 3, n = y′ = 2, z′ = 0, x′′ = −2, y′′ = 4, and z′′ = 2, and assume (x′, y′, z′) are the values of
(x, y, z) before the loop iteration.

Then x, y, z, x′, y′, z′,m, n are integers, and mn− xy = 6− 6 = 0 = z′.
Since x 6= 0 and x = 3 is odd and x∗m = 9 > 0, the program sets the new value of z to 0−y = −2,
so z′′ = −2 is the value of z after this iteration.
The program sets x′′ to b3/(−2)c = −2, and y′′ to 2 ∗ y′ = 4. So (x′′, y′′, z′′) = (−2, 4,−2) are the
values of (x, y, z) after one iteration.
So mn− x′′y′′ = 6− (−2)(4) = 14 6= z′′ =.
Thus z′ = mn− x′y′ ∧ (x′, y′, z′) are the values of (x, y, z) before the loop iteration ∧ (x′′, y′′, z′′)
are the values of (x, y, z) after the loop iteration, and z′′ 6= mn− x′′y′′.

Since x, y, z, x′, y′, z′,m, n are integers, ∃x′, y′, z′, x′′, y′′, z′′,m, n ∈ N, z′ = mn − x′y′ ∧ (x′′, y′′, z′′) are
the values of (x, y, z) after one iteration of the loop ∧ z′′ 6= mn− x′′y′′.
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Complexity of Algorithms

1. Consider the MatrixMultiplication algorithm that multiplies two matrices. Let A and B be 2D arrays, which
store the two matrices. The result of the matrix multiplication is stored in a 2D array C. In the code below,
rows and cols are the lengths of the rows and columns of the array.

MatrixMultiplication(A,B)
1. if (A.cols! = B.rows)
2. return null
3. i = 0
4. while (i < A.rows){
5. k = 0
6. while (k < B.cols){
7. C[i][k] = 0
8. j = 0
9. while (j < A.cols){
10. temp = C[i][k]
11. result = A[i][j] ·B[j][k]
12. C[i][k] = temp+ result
13. j = j + 1

}
14. k = k + 1

}
15. i = i+ 1
}

16. return C

(a) Compute the exact number of steps executed for each line of the algorithm.
Soln:

Matrix Multiplication(A,B)
1. if (A.cols! = B.rows) {6 steps}
2. return NULL {2 steps}
3. i := 1 {3 steps}
4. while (i ≤ A.rows) {5 steps}
5. k := 1 {3 steps}
6. while (k ≤ B.cols) {5 steps}
7. C[i][k] := 0 {5 steps}
8. j := 1 {3 steps}
9. while (j ≤ A.cols) {5 steps}
10. α := C[i][k] {5 steps}
11. β := A[i][j] ·B[j][k] {9 steps}
12. C[i][k] := α+ β {7 steps}
13. j := j + 1 {5 steps}
14. k := k + 1 {5 steps}
15. i := i+ 1 {5 steps}
16. return C {2 steps}
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(b) Compute tMM




1 2 3
4 5 6
7 8 9
4 2 9

 ,
 1 2 3 4 5

6 7 8 9 1
2 4 6 8 9


.

Soln:
The test in line 1. takes 6 steps.
The initialization in line 3 takes 3 steps.

The inner while loop from lines 9 – 13 is executed A.cols = 3 times. The total number of steps for the
execution once of the while loop is 5 + 5 + 9 + 7 + 5 = 31. Hence the total number of steps spent in the
while loop is 3 · 31 + 5 = 98 (the last 5 steps come from the fact that the while loop condition is checked
one final time and fails, which terminates the execution of the loop).

The while loop from lines 6 – 14 is executedB.cols = 5 times. The total number of steps for one iteration
of this while loop is 5 + 5 + 3+ (lines 9 – 13) +5 = 13 + 98 + 5 = 116 steps. Hence the total number of
steps spent in the while loop is 5 · 116 + 5 = 585.

The while loop from lines 4 – 15 is executed A.rows = 4 times. The total number of steps for the exe-
cution once of this while loop is 5 + 3+ (lines 6 – 14) +5 = 8 + 585 + 5 = 598 steps. Hence the total
number of steps spent in the while loop is 4 · 598 + 5 = 2397.

The total number of steps on the whole function is 6 + 3 + 2397 + 2 = 2408. So tMM (A,B) = 2408.

(c) For n× n arrays, A and B, find TMM (n). Soln:
Assume A and B are both n× n matrices. We compute the number of steps of the algorithm in this case.

The while loop from lines 9 – 13 will take n× 31 + 5 = 31n+ 5 steps.

The while loop from lines 6 – 14 will take (13 + (31n+ 5) + 5)n+ 5 = 31n2 + 23n+ 5 steps.

The while loop from lines 4 – 15 will take (8+(31n2 +23n+5)+5)n+5 = 31n3 +23n2 +18n+5 steps.

The whole algorithm takes 6 + 3 + (31n3 + 23n2 + 18n+ 5) + 2 = 31n3 + 23n2 + 18n+ 16.
Hence TMM (n) = 31n3 + 23n2 + 18n+ 16.

(d) For n× n arrays, A and B, prove TMM (n) ∈ O(n3).
Soln:

Prove that TMM (n) ∈ O(n3):

Let c = 88
Then c ∈ R+

Let B = 1
Then B ∈ N

Suppose n ≥ B,
Then n ≥ 1

16n ≥ 16, so 16n3 ≥ 16
18n ≥ 18, so 18n2 ≥ 18n, so 18n3 ≥ 18n
23n ≥ 23, so 23n3 ≥ 23n2

31n3 ≥ 31n3

Therefore 88n3 ≥ 16 + 18n+ 23n2 + 31n3

Hence, n ≥ B → 16 + 18n+ 23n2 + 31n3 ≤ c · n3
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Since n is an arbitrary natural number, ∀n ∈ N, n ≥ B → 16 + 18n+ 23n2 + 31n3 ≤ c · n3

Since c is a positive real number, ∀c ∈ R+,∃B ∈ N, n ≥ B → 16 + 18n+ 23n2 + 31n3 ≤ c · n3

Since TMM (n) = 16 + 18n+ 23n2 + 31n3, TMM (n) ∈ O(n3)

(e) For n× n arrays, A and B, prove TMM (n) ∈ Ω(n3).
Soln:
From the part(b), we have TMM (A,B) = 16 + 18n+ 23n2 + 31n3.
Prove that TMM (n) ∈ Ω(n3):

Let c = 31
Then c ∈ R+

Let B = 1
Then B ∈ N

Suppose n ≥ B,
Then n ≥ 1

16 ≥ 0
18n ≥ 0
23n2 ≥ 0
31n3 ≥ 31n3

Therefore 16 + 18n+ 23n2 + 31n3 ≥ 31n3

Hence, n ≥ B → 16 + 18n+ 23n2 + 31n3 ≥ c · n3

Since n is an arbitrary natural number, ∀n ∈ N, n ≥ B → 16 + 18n+ 23n2 + 31n3 ≥ c · n3

Since c is a positive real number, ∀c ∈ R+,∃B ∈ N, n ≥ B → 16 + 18n+ 23n2 + 31n3 ≥ c · n3

Since TMM (n) = 16 + 18n+ 23n2 + 31n3, TMM (n) ∈ Ω(n3)

(f) For n×n arrays, A andB, is there a natural number r ∈ N such that TMM ∈ Θ(nr)? Justify your answer.
Soln:
From the two proofs above, TMM (n) ∈ O(n3) and TMM (n) ∈ Ω(n3), so it follows that TMM (n) ∈
Θ(n3). Hence r = 3.

2. Consider the Selection Sort algorithm below, that sorts an input array A into non-decreasing order.

SS(A):
1. i := 0 // 3 steps
2. while i < A.length: // 5 steps
3. s := i // 3 steps
4. j := i+ 1 // 5 steps
5. while j < A.length: // 5 steps
6. if A[j] < A[s]: // 6 steps
7. s := j // 3 steps
8. j := j + 1 // 5 steps
9. t := A[i] // 4 steps

10. A[i] := A[s] // 5 steps
11. A[s] := t // 4 steps
12. i := i+ 1 // 5 steps

For each question below, find the exact answer without using O, Ω, or Θ.

(a) Compute the number of steps executed for each line of the algorithm.
Solution: (See above.)
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(b) Compute tSS([4, 2, 1, 3, 5]).
Solution: Let’s analyze the general behaviour of the algorithm, ignoring line 7 for the moment. Let
n = A.length.
In general, lines 5,6,8 are executed n − 1 − i times (once for each value of j = i + 1, i + 2, . . . , n − 1),
for a total of 16n − 16 − 16i = 16n − 16(i + 1) steps. Thus, lines 2, 3, 4, 5, 6, 8, 9, 10, 11, 12 take
16n− 16(i+ 1) + 36 steps (remember that line 5 will get executed one last time for j = n, which was not
included in the 16n − 16(i + 1)), and these lines are executed for each value of i = 0, 1, . . . , n − 1 for a
total of

n−1∑
i=0

16n− 16(i+ 1) + 36 = 16n2 + 36n− 16
n∑

j=1

j

= 16n2 + 36n− 16
n(n+ 1)

2
= 16n2 + 36n− 8n2 − 8n

= 8n2 + 28n steps.

When we add the 8 steps for line 1 and the last execution of line 2 (when i = n), we get a total of
8n2 + 28n+ 8 steps.
For the specific input [4, 2, 1, 3, 5], n = A.length = 5 and line 7 actually gets executed a total of 3 times
(once for i = 0, j = 1, once for i = 0, j = 2, and once for i = 2, j = 3), which gives a grand total of
8(52) + 28(5) + 8 + 9 = 357 steps.

(c) Compute TSS(3).
Solution: We need to figure out the worst number of times that line 7 gets executed, and add this to the
general analysis result of 8n2 +28n+8 above. Line 7 gets executed at most 3 times (once for i = 0, j = 1,
once for i = 0, j = 2, and once for i = 1, j = 2). However, if line 7 gets executed for i = 0, j = 1 and
i = 0, j = 2, it means the original elements are [a, b, c] in order a > b > c so after the first swap in lines
9–11, the array will become [c, b, a] with c < b < a and line 7 will not be executed again. Other cases
behave similarly: in practice, line 7 is executed at most twice, for a total of 6 steps.
In addition to the 8n2 +28n+8 steps from our general analysis, this means that TSS(3) = 8(32)+28(3)+
8 + 6 = 170.

(d) Compute TSS(n).
Solution: From the general analysis above, we know that TSS(n) = 8n2 + 28n + 8+ the worst-case
number of times that line 7 is executed. Although in theory, line 7 could be executed every time through
the loop, we know that in practice this cannot happen because if line 7 is executed for every value of
j = i + 1, . . . , n − 1 it means that A[i] > A[i + 1] > · · · > A[n − 1] and A[i] will be swapped with
A[n− 1] on lines 9–11 so that line 7 will never be executed again for j = n− 1.
The worst-case seems to happen when A is initially sorted in reverse order, in which case line 7 will get
executed exactly bn/2c · dn/2e times, so that TSS(n) = 8n2 + bn/2c · dn/2e+ 28n+ 8.
However, this is a more difficult problem that it looks. In fact, it is more difficult than I intended: to prove
rigorously that the reverse-sorted A is the worst-case is beyond the scope of this assignment and of this
course.

3. Prove that TBFT(n) ∈ Θ(n2), where BFT is the algorithm below.

BFT(E,n):
1. i := n− 1
2. while i > 0:
3. P [i] := −1
4. Q[i] := −1
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5. i := i− 1
6. P [0] := n
7. Q[0] := 0
8. t := 0
9. h := 0

10. while h ≤ t:
11. i := 0
12. while i < n:
13. if E[Q[h]][i] 6= 0 and P [i] < 0:
14. P [i] := Q[h]
15. t := t+ 1
16. Q[t] := i
17. i := i+ 1
18. h := h+ 1

(Although this is not directly relevant to the question, this algorithm carries our a breadth-first traversal of the
graph on n vertices whose adjacency matrix is stored in E.)

Solution:

Proof that T (n) ∈ O(n2):
Let c = 80 and B = 1. Then, c ∈ R+ and B ∈ N.

Let n ∈ N and suppose n ≥ 1.

From the algorithm, for any input E,n,

line 1 takes 5 steps;

lines 2–5 take 17 steps and are executed exactly n− 1 times (once for each value of i = n− 1, n− 2, . . . , 1),
in addition to 4 steps for one last execution of line 2 (when the loop test becomes false) for a total of
17(n− 1) + 4 = 17n− 13 steps;

lines 6–9 take 14 steps;

lines 12–17 take at most 35 steps (if the condition of the if statement is true at every iteration) and these lines
are executed exactly n times (once for each value of i = 0, 1, . . . , n− 1), in addition to 4 steps for one last
execution of line 12 (when the loop test becomes false) for a total of at most 35n+ 4 steps;

hence, lines 10–18 take no more than 35n+ 4 + 12 = 35n+ 16 steps;

we argue that lines 10–18 are executed at most n times, as follows: from line 10, h ≤ t; from line 16, Q[t]
always gets assigned a value ≥ 0; hence Q[h] is always ≥ 0, so P [i] always gets assigned a value ≥ 0 on
line 14; lines 14–16 are executed at most once for each value of i = 1, . . . , n−1 because they are executed
only when P [i] < 0 and P [0] = n ≥ 0 (from line 6) and for every value of i such that P [i] < 0, line 14
sets P [i] ≥ 0; therefore, the value of t will always be at most n− 1 (t starts at 0 and by the reasoning we
just completed, it is incremented at most n − 1 times); hence, lines 10–18 are executed at most once for
each value of h = 0, 1, . . . , n − 1, in addition to 4 steps for one last execution of line 10 (when the loop
test becomes false) for a total of no more than (35n+ 16)n+ 4 = 35n2 + 16n+ 4 steps;

therefore, the algorithm takes no more than 5 + 17n− 13 + 14 + 35n2 + 16n+ 4 = 35n2 + 33n+ 10 steps.
Since n ≥ 1, T (n) ≤ 35n2 + 33n+ 10 ≤ 35n2 + 33n2 + 10n2 ≤ 80n2.
Hence, n ≥ 1→T (n) ≤ 80n2 and since n is an arbitrary natural number, ∀n ∈ N, n ≥ 1→T (n) ≤ 80n2.
Therefore, ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B→ T (n) ≤ cn2, i.e., T (n) ∈ O(n2).

Proof that T (n) ∈ Ω(n2):
Let c = 1 and B = 1. Then, c ∈ R+ and B ∈ N.

Let n ∈ N and suppose n ≥ 1.
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Consider an input E,n such that E[i][j] = 1 for all indices 0 ≤ i < n, 0 ≤ j < n. The first time that lines
12–17 are executed, the condition of the if statement will be true for all values of i = 1, 2, . . . , n− 1 so at
the end of the loop, t will have value n− 1 (since t starts with value 0 and gets incremented n− 1 times).
This means that lines 10–18 will get executed for every value of h = 0, 1, . . . , n − 1. Since lines 12–17
always get executed exactly n times (once for each value of i = 0, 1, . . . , n− 1), they take at least n steps.
Since lines 10–18 get executed n times, and they take at least n steps for each iteration, they take at least
n2 steps in total. So T (n) ≥ n2.
Hence, n ≥ 1→ T (n) ≥ n2 and since n is an arbitrary natural number, ∀n ∈ N, n ≥ 1→ T (n) ≥ n2.
Therefore, ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B→ T (n) ≥ cn2, i.e., T (n) ∈ Ω(n2).

Hence, T (n) ∈ Θ(n2), as required.

IMPORTANT NOTE: Make sure that you understand how to do the scratch work to figure out the values of the
constants. If you have any questions about this, ask us!

4. Your rich uncle gives you some money, so you decide to drop CSCA65 and travel around Europe for the summer.
There’s a list of n cities c1, . . . , cn that you want to visit, but you only have enough money for n− 2 train rides,
so you’re going to have to walk for one leg of the trip. Seeing as it’s summer and it’s hot outside, you want to
walk for the shortest distance possible, so you want to find the two cities which are closest together. Assume
you have a 2 dimensional n× n array dist such that dist(ci, cj) returns the distance between any two cities.

Here is an iterative algorithm for finding the closest pair:

Find_closest_pair (c_1, c_2, ..., c_n) Steps:

1. if (n = 1) return NIL 6
2. min := infinity 3
3. min_i := 0 3
4. min_j := 0 3
5. i := 1 3
6. while (i <= n) 4
7. j := i+1 5
8. while (j <= n) 4
9. if (dist(c_i, c_j) < min) then 7
10. min := dist(c_i, c_j) 5
11. min_i := i 3
12. min_j := j 3
13. j := j+1 5
14 i := i+1 5
15. return (min_i, min_j) 3

end

(a) Fill in the number of steps for each line above, you may assume that accessing dist takes one step as in
1 dimensional arrays.

(b) Let TCP (n) represent the worst case complexity of Find\_Closest\_Pair(c_1,c_2,c_3,c_4).
Compute TCP (4) exactly.
b239

(c) Determine a function g such that TCP (c1, c2, . . . , cn) ∈ Θ(g(n)) and prove that your g is correct.
g(n) = n2. We need to prove the TCP (c1, c2, . . . , cn) ∈ O(g(n)) and TCP (c1, c2, . . . , cn) ∈ Ω(g(n)).
First let us prove O:
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The lines 1..5 and the line 15 are executed only once, they require in total 21 steps.
The lines of the outer loop: 6 7 and 14 are executed at most n times, then they require at most 27n steps.
The lines in the inner loop, are executed at most n times at each iteration of the outer loop, so require at
most 14n steps at each iteration of the outer loop. The outer loop is executed at most n times, the lines of
the inner loop are then executed at most 14n2.
Therefore this algorithm requires less than 14n2 + 27n+ 21, thus TCP (n) ≤ 4n2 + 27n+ 21 .
Let us now do the formal proof:

Let c = 62
Let n0 = 1

Let n ∈ N
Assume n > n0

then n > 1
thus n2 > n so 27n2 ≥ 27n
and also n2 > 1 so 21n2 ≥ 21
then 14n2 + 27n2 + 21n2 ≥ 14n2 + 27n+ 21 ≥ TCP (n)
thus TCP (n) ≤ 62n2 so TCP (n) ≤ cn2

therefore n > n0 ⇒ TCP (n) ≤ cn2

Since n is an arbitrary number in N, ∀n ∈ Nn > n0 ⇒ TCP (n) ≤ cn2

Since c and n0 are in N, ∃c ∈ N∃n0 ∈ N∀n ∈ Nn > n0 ⇒ TCP (n) ≤ cn2

Therefore TCP (n) ∈ O(n2)

We now need to prove that TCP (n) ∈ Ω(n2).
At iteration k of the outer loop the inner loop will be executed n−i times. The inner loop contain more than
2 steps, so at iteration k of the outer loop, the inner loop would require more than 2(n−k) steps. So the it-
eration k of the outer loop will require more than 2(n−k)+1 steps. The outer loop is executed n times, so
the total number of steps for the outer loop will be bigger than Σn

k=1(2(n−k)+1). The other lines are exe-
cuted only once, and then require a constant number of steps. Therefore TCP (n) ≥ Σn

k=1(2(n−k)+1)+1.
Let us now do the formal proof:

Let c = 1
Let n0 = 1

Let n ∈ N
Assume n > n0

then n > 1
TCP (n) ≥ Σn

k=1(2(n− k) + 1) + 1
so TCP (n) ≥ Σn−1

l=0 (2l + 1) + 1
so TCP (n) ≥ 2Σn−1

l=0 l + n+ 1
so TCP (n) ≥ 2 (n−1)n

2 + n+ 1
so TCP (n) ≥ n2 + 1
then TCP (n) ≥ n2

thus TCP (n) ≥ cn2

therefore n > n0 ⇒ TCP (n) ≥ cn2

Since n is an arbitrary number in N, ∀n ∈ Nn > n0 ⇒ TCP (n) ≥ cn2

Since c and n0 are in N, ∃c ∈ N∃n0 ∈ N∀n ∈ Nn > n0 ⇒ TCP (n) ≥ cn2

Therefore TCP (n) ∈ Ω(n2)
Thus TCP (n) ∈ Θ(n2)
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Asymptotic Notation

1. (a) First we prove that log2 x = log10 x log2 10:
Let a = log2 x, b = log10 x
Then 2a = x = 10b (by defn of log)
Thus a log2 2 = b log2 10 (take log of both sides)

Thus log2 x = log10 x log2 10 (substitute in for a and b)

Now we need to prove the statement:
∃c ∈ R+ log2 x = c log10 x

Let c = log2 10. Then c ∈ R+

Then log2 x = c log10 x (by proof above)
Therefore ∃c ∈ R+ log2 x = c log10 x.
(6 marks - 4 for proof, 2 for structure)

(b) We can infer that f(x) ∈ Θ(g(x) and g(x) ∈ Θ(f(x)).
(5 marks)

(c) 123(10) = 1111011(2), 177(10) = 10110001(2)

1101011(2) = 107(10), 1000011(2) = 67(10)

(4 marks)

(d) 1100× 101 = 111100. To compute 9x where x is binary, and working only in binary, one would convert
9(10) = 1001(2). Then using binary long-hand multiplication, we see that multiplying any number by
the binary representation of 9 is equivalent to adding the number x to x right-shifted by 3 digits. 9(10) ×
110110(2) = 111100110(2). (5 marks)

2. (a) We will prove the statement to be true.
Thus we will prove ∃d ∈ R+,∃a ∈ N,∀n ∈ N, n ≥ a→ 6n5 + n2 − n3 ≤ dn5

Let d = 6, then c ∈ R+

Let a = 1, then a ∈ N
Suppose n ≥ a

Then 6n3 + 1 ≤ 6n3

Then (6n3 + 1)n2 ≤ 6n5

Then 6n5 + n2 ≤ 6n5

Then 6n5 + n2 − n3 ≤ 6n5

Then 6n5 + n2 − n3 ≤ cn5

Thus n ≥ a→ 6n5 + n2 − n3 ≤ dn5.
Thus ∀n ∈ N, n ≥ a→ 6n5 + n2 − n3 ≤ dn5

. Thus ∃d ∈ R+,∃a ∈ N,∀n ∈ N, n ≥ a→ 6n5 + n2 − n3 ≤ dn5

. (6 marks)

(b) We will prove the statement to be true.
Thus we will prove ∃d ∈ R+,∃a ∈ N,∀n ∈ N, n ≥ a→ (1 + 1/n) ≥ d/n

Let d = 1, then c ∈ R+

Let a = 1, then a ∈ N
Suppose n ≥ a

Then 1 + 1/n ≥ 1/n
Thus n ≥ a→ (1 + 1/n) ≥ d/n

Thus ∀n ∈ N, n ≥ a→ (1 + 1/n) ≥ d/n
Thus ∃d ∈ R+,∃a ∈ N,∀n ∈ N, n ≥ a→ (1 + 1/n) ≥ d/n
(7 marks)

(c) We will prove the statement to be true.
Thus we will prove ∃d ∈ R+,∃a ∈ N,∀n ∈ N, n ≥ a→ (n log n) ≤ dn2
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Let d = 1, then c ∈ R+

Let a = 2, then a ∈ N
Suppose n ≥ a

Then log n ≤ n
Then n log n ≤ n2

Thus n ≥ a→ (n log n) ≤ dn2

Thus ∀n ∈ N, n ≥ a→ (n log n) ≤ dn2

Thus ∃a ∈ N,∀n ∈ N, n ≥ a→ (n log n) ≤ dn2

Thus ∃d ∈ R+,∃a ∈ N,∀n ∈ N, n ≥ a→ (n log n) ≤ dn2

(7 marks)

(d) We will prove that (log2 n)n ∈ O(nn log2 n)

Thus we will prove ∃d ∈ R+,∃a ∈ N,∀n ∈ N, n ≥ a→ (log2 n)n ≤ dnn log2 n

We can ignore the base on the logs.
Let d = 1, then c ∈ R+

Let a = 2, then a ∈ N
Suppose n ≥ a

Then log(log(n) ≤ log n (since log n ≤ n for n ≥ 1).
Then log(log(n)) ≤ (log n)(log n)
Then n log(log(n)) ≤ n(log n)(log n)
Then log((log n)n) ≤ log(nn log n) (by rule of log/exponents)
Then (log n)n ≤ nn log n (exponentiate)
Then (log2 n)n ≤ nn log2 n

Thus n ≥ a→ (log2 n)n ≤ dnn log2 n

Thus ∀n ∈ N, n ≥ a→ (log2 n)n ≤ dnn log2 n

Thus ∃a ∈ N,∀n ∈ N, n ≥ a→ (log2 n)n ≤ dnn log2 n

Thus ∃d ∈ R+,∃a ∈ N,∀n ∈ N, n ≥ a→ (log2 n)n ≤ dnn log2 n

(bonus marks)

3. The error in the argument occurs in ignoring the fact that k is a function of n. Therefore, what we are really
getting is

∑n
k=1 kn = n

∑n
k=1 k = n · n(n−1)

2 ∈ O(n3).
(5 marks)

Thus we will prove that
∑n

k=1 kn ∈ O(n3), that is,

∃d ∈ R+,∃a ∈ N,∀n ∈ N, n ≥ a→
∑n

k=1 kn ≤ dn3

Let d = 1, then c ∈ R+

Let a = 1, then a ∈ N
Suppose n ≥ a

Then n3/2 ≤ n3

Thus n3/2− n2/2 ≤ n3

And n · n(n−1)
2 = n3/2− n2/2

And
∑n

k=1 kn = n · n(n−1)
2

Thus
∑n

k=1 kn ≤ n3

Thus n ≥ a→
∑n

k=1 kn ≤ dn3

Thus ∀n ∈ N, n ≥ a→
∑n

k=1 kn ≤ dn3

Thus ∃a ∈ N,∀n ∈ N, n ≥ a→
∑n

k=1 kn ≤ dn3

Thus ∃d ∈ R+,∃a ∈ N,∀n ∈ N, n ≥ a→
∑n

k=1 kn ≤ dn3

(15 marks)

4. (a) Proof:
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Suppose limn→∞ f(n)/g(n) = p
(if the limit does not exist, then the proof is trivial).

Then for some value n0 ∈ N, if n ≥ n0, then there is a c such that |f(n)/g(n)−p| ≤ c. Suppose
that n ≥ n0.

Then p− c ≤ f(n)
g(n) ≤ p+ c

Also notice that if the limit exists, it must be true that
for some a ∈ N, that if n ≥ a,
then f(n) and g(n) must either both be positive, or both be negative.
(otherwise the function f(n)/g(n) would oscillate between
negative and positive and the limit could not exist).

Thus (p− c)g(n) ≤ f(n) ≤ (p+ c)g(n)
(This works if g(n) is positive - if it is negative,
then flip the inequality signs around and continue).

Thus n ≥ n0 → (p− c)g(n) ≤ f(n) ≤ (p+ c)g(n)
Now we will prove that:
∃d1, d2 ∈ R+,∃b ∈ N,∀n ∈ N, n ≥ b→ (f(n) ≤ d1g(n) ∧ f(n) ≥ d2g(n))

. Let b = max(a, n0), then b ∈ N.
Let d1 = p+ c, d2 = p− c then d1, d2 ∈ R+.

Suppose n ≥ b
Then d2g(n) ≤ f(n) ≤ d1g(n)
Then f(n) ≤ d1g(n) ∧ f(n) ≥ d2g(n)

Then n ≥ b→ (f(n) ≤ d1g(n) ∧ f(n) ≥ d2g(n))
Thus ∃d1, d2 ∈ R+,∃b ∈ N,∀n ∈ N, n ≥ b→ (f(n) ≤ d1g(n) ∧ f(n) ≥ d2g(n))
Thus f(n) ∈ Θ(g(n))

Thus limn→∞ f(n)/g(n) = p→ f(n) ∈ Θ(g(n)).
Thus f(n) ∈ Θ(g(n)) if limn→∞ f(n)/g(n) = p
(15 marks)

(b) What does it mean if p = 0? If p = 0 then g(n) grows asymptotically faster than f(n), so we know that
f(n) ∈ O(g(n)).
(5 marks)

5. From the definitions ofO, Ω and Θ, prove or disprove each of the following using our carefully structured form:

(a) n! ∈ Ω(nn)
Soln:
This is false, so we want to show n! 6∈ Ω(nn).
Negate the definition of Ω to get: ∀c ∈ R+,∀B ∈ N,∃n ∈ N, n ≥ B ∧ g(n) ≤ cf(n).
Let c ∈ R+

Let B ∈ N
Let n = max{B + dce, B + d 1c e}
Then n ∈ N

So n ≥ B (since n = B + dceanddce ≥ 1)
n ≤ n (By algebra)
n(n− 1) ≤ n2 (Since n ≥ 0)
n(n− 1)(n− 2) ≤ n3

. . .
n(n− 1)(n− 2)...(n− (n− 2))(1) ≤ nn

Therefore, n! ≤ nn

Case 1: c ≥ 1
n! ≤ cnn (Since c ≥ 1)

Case 2: 0 < c < 1
n ≥ 1

c (by defn of n), so nc ≥ 1
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Therefore, cnn ≥ nn−1.
n ≤ n (By algebra)
n(n− 1) ≤ n2 (Since n ≥ 0)
n(n− 1)(n− 2) ≤ n3

. . .
n(n− 1)(n− 2)...(n− (n− 2)) ≤ nn−1

Also, n(n− 1)(n− 2)...(n− (n− 2)) = n(n− 1)(n− 2)...(n− (n− 2))(1) = n!
Hence, n! ≤ cnn (Since cnn ≥ nn−1)

Since n is a natural number, ∃n ∈ N, n ≥ B ∧ n! ≤ cnn

Since B is an arbitrary natural number, ∀B ∈ N,∃n ∈ N, n ≥ B ∧ n! ≤ cnn

Since c is an arbitrary positive real number, ∃c ∈ R+,∀B ∈ N,∃n ∈ N, n ≥ B ∧ n! ≤ cnn

(b) n+12
2n2+2 ∈ O(1)
Soln:
This is true. By definition of O, show: ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B → n+12

2n2+2 ≤ c
Let c = 1
Then c ∈ R+

Let B = 3
Then B ∈ N

Let n ∈ N
Suppose n ≥ B

n ≥ 3 (since B = 3)
n2 ≥ 3n
2n2 ≥ 6n
2n2 + 2 ≥ 6n+ 2
1 ≥ 6n+2

2n2+2 (Since n ≥ 0)
6n+ 2 ≥ n+ 12 (since n ≥ 3)
Therefore, 1 ≥ n+12

2n2+2

Hence, n ≥ B → 1 ≥ n+12
2n2+2

Since n is an arbitrary natural number, ∀n ∈ N, n ≥ B → 1 ≥ n+12
2n2+2

Since B is a natural number, ∃B ∈ N,∀n ∈ N, n ≥ B → 1 ≥ n+12
2n2+2

Since c is a positive real number, ∀c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B → c ≥ n+12
2n2+2

(c) n3 + 3n ∈ Θ(2n3)
Soln:
This is true. By the definition of Θ, show:
∃c1 ∈ R+,∃c2 ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B → c1(2n3) ≤ (n3 + 3n) ≤ c2(2n3)

Let c1 = 1
2

Then c1 ∈ R+

Let c2 = 1
Then c2 ∈ R+

Let B = 2
Then B ∈ N

Let n ∈ N
Suppose n ≥ B

Then n ≥ 2
n3 ≤ n3 + 3n (By n ≥ 2)
Thus c12n3 ≤ (n3 + 3n), (since c1 = 1

2 )
3n ≤ n3, since n ≥ 2
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Thus n3 + 3n ≤ n3 + n3, so (n3 + 3n) ≤ c22n3 (By c2 = 1)
Hence, c1(2n3) ≤ (n3 + 3n) ≤ c2(2n3)

Therefore n ≥ B → c1(2n3) ≤ (n3 + 3n) ≤ c2(2n3)
Since n is an arbitrary natural number, ∀n ∈ N, n ≥ B → c1(2n3) ≤ (n3 + 3n) ≤ c2(2n3)

Since B is a natural number, ∃B ∈ N, n ≥ B → c1(2n3) ≤ (n3 + 3n) ≤ c2(2n3)
Since c2 is a positive real number, ∃c1 ∈ R+,∃B ∈ N, n ≥ B → c1(2n3) ≤ (n3 + 3n) ≤ c2(2n3)

Since c1 is a positive real number, ∃c1 ∈ R+,∃c1 ∈ R+,∃B ∈ N, n ≥ B → c1(2n3) ≤ (n3 + 3n) ≤
c2(2n3)

6. For any function f : N→ R≥0, define the function f̄ : N→ R≥0 as follows:

∀n ∈ N, f̄(n) = df(n)e

For any function f : N→ R≥0, define the function f̂ : N→ R≥0 as follows:

∀n ∈ N, f̂(n) = bf(n)c

Prove or disprove each of the following using our carefully structured form:

(a) f ∈ O(g)↔ f ∈ O(ḡ) Soln:
False. The implication f ∈ O(ḡ)→ f ∈ O(g) is not true. We will give a counterexample.
Let ∀n ∈ N, f(n) = 2, and ∀n ∈ N, g(n) = 1

n+1 . We show that f ∈ O(ḡ) but f 6∈ O(g).

Let c = 2
Then c ∈ R+

Let B = 0
Then B ∈ N

Let n ∈ N
Suppose n ≥ 0
f(n) = 2 (by the defn of f(n))
ḡ(n) = 1 (by the defn of ḡ(n))

Hence n ≥ 0→ f(n) ≤ 2 · ḡ(n)
Hence ∀n ∈ N, n ≥ 0→ f(n) ≤ 2 · ḡ(n)

Since B is a natural number, ∃B ∈ N,∀n ∈ N, n ≥ B → f(n) ≤ c · ḡ(n)
Since c is a non-negative real number, ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B → f(n) ≤ c · ḡ(n)

Hence f ∈ O(ḡ(n)).

To show that f 6∈ O(g) we negate the definition of f ∈ O(g) and prove that the negation is true. So
assume that
∀c ∈ R+,∀B ∈ N,∃n ∈ N, n ≥ B ∧ f(n) > c · g(n).

Let c ∈ R+

Let B ∈ N
Let n = dmax{B, c}e
Then n ∈ N

So n ≥ B
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f(n) = 2 (by defn of f(n))
c · g(n) = c · 1

n+1 ≤ 1 (since n ≥ c)
Hence 2 > c · 1

n+1

So f(n) > c · g(n)
Therefore, n ≥ B ∧ f(n) > c · g(n)

Since n is a natural number, ∃n ∈ N, n ≥ B ∧ f(n) > c · g(n)
Since B is an arbitrary natural number, ∀B ∈ N,∃n ∈ N, n ≥ B ∧ f(n) > c · g(n)

Since c is an arbitrary positive real number, ∀c ∈ R+,∀B ∈ N,∃n ∈ N, n ≥ B ∧ f(n) > c · g(n)

Hence f 6∈ O(g(n)).

Therefore, ¬(f ∈ O(ḡ)→ f ∈ O(g)), so ¬(f ∈ O(g)↔ f ∈ O(ḡ)).

(b) f̄ · f̂ ∈ O(f2)

(c) Consider O2(g) = {f : N→ R≥0|∃c ∈ R+,∀n ∈ N, f(n) ≤ cg(n)}.

Prove or disprove: f ∈ O(g)↔ f̄ ∈ O2(ḡ). Soln:

False. We show a case where f̄ ∈ O2(ḡ) is true, but f ∈ O(g) is false.
Let f(n) = 1

n and g(n) = 1
n2 .

Let c = 1
Then c ∈ R+

Let n ∈ N
f̄(n) = 1 (by defn of f̄(n))
ḡ(n) = 1 (by defn of ḡ(n))
Hence f̄(n) ≤ 1 · ḡ(n)

Since n is an arbitrary natural number, ∀n ∈ N, f̄(n) ≤ c · ḡ(n)
Since c is a positive real number, ∃c ∈ R+,∀n ∈ N, f̄(n) ≤ c · ḡ(n)

Hence f̄ ∈ O2(ḡ)

Show that f 6∈ O(g).

Let c ∈ R+

Let B ∈ N
Let n = max{B, c}+ 1.
Then n ∈ N.

Thus n ≥ B.
f(n) = 1

n and g(n) = 1
n2 (by defn of f(n) and g(n))

n ≥ c, so 1
n > c 1

n2

Hence f(n) > cg(n)
Therefore, n ≥ B ∧ f(n) > cg(n).

Since n is a natural number, ∃n ∈ N, n ≥ B ∧ f(n) > cg(n).
Since B is an arbitrary natural number, ∀B ∈ N,∃n ∈ N, n ≥ B ∧ f(n) > cg(n).

Since c is a positive real number, ∀c ∈ R+,∀B ∈ N,∃n ∈ N, n ≥ B ∧ f(n) > cg(n).

Hence f 6∈ O(g)

7. Prove or disprove each statement below.
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(a) 3n2 − 4n ∈ Ω(n2)
Soln. We prove that 3n2 − 4n ∈ Ω(n2).

Let c = 1 and B = 2. Then, c ∈ R+ and B ∈ N.
Let n ∈ N and suppose n ≥ 2.

n ≥ 2
→ 2n ≥ 4
→ 3n ≥ n+ 4
3n− 4 ≥ n
n(3n− 4) ≥ n2

3n2 − 4n ≥ n2

So n ≥ 2→ 3n2 − 4n ≥ n2 and since n is arbitrary,
∀n ∈ N, n ≥ 2→ 3n2 − 4n ≥ n2.

Hence, ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B → 3n2 − 4n ≥ cn2,

i.e., 3n2 − 4n ∈ Ω(n2).

(b) n log n + 5n ∈ O(n log n) For this question, assume that ”log” means ”log2” (any fixed base was OK).
We prove that nlogn+ 5n ∈ O(nlogn).
Let c = 6 and B = 2. Then c ∈ R+ and B ∈ N.

Let n ∈ N and suppose n ≥ 2.
n ≥ 2→ logn ≥ log2 = 1
→ nlogn ≥ n
→ 5nlogn ≥ 5n
→ 6nlogn ≥ 5n+ nlogn

So n ≥ 2→ nlogn+ 5n ≤ 6nlogn
Since n is arbitrary, ∀n ∈ N, n ≥ 2→ nlogn+ 5n ≤ 6nlogn.

Hence,
∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B → nlogn+ 5n ≤ cnlogn

, i.e., nlogn+ 5n ∈ O(nlogn).

(c) 2001050 + n/4 ∈ O(n)

We prove that 2001050 + n/4 ∈ O(n).

Let c = 1.25 and B = 2001050. Then c ∈ R+ and B ∈ N.

Let n ∈ N and suppose n ≥ 2001050.
n ≥ 2001050

→ n+ n/4 ≥ 2001050 + n/4
→ 1.25n ≥ 2001050 + n/4

So n ≥ 2001050 → 2001050 + n/4 ≤ 1.25n and since n is arbitrary,

∀n ∈ N, n ≥ 2001050 → 2001050 + n/4 ≤ 1.25n.

Hence, ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B → 2001050 + n/4 ≤ cn, i.e.,

2001050 + n/4 ∈ O(n).

(d) 5/n+ 1 ∈ O(1/n)
(d) We disprove that 5/n+ 1 ∈ O(1/n).

Let c ∈ R+ and B ∈ N.
Let n = max(B, ceil(c)). Then n ∈ N.
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By definition of max, n ≥ B.
Also, n ≥ c→ n > c− 5→ 5 + n > c→ 5/n+ 1 > c/n.

Hence, ∃n ∈ N, n ≥ B ∧ 5/n+ 1 > c1/n.
Since c and B are arbitrary, ∀c ∈ R+,∀B ∈ N,∃n ∈ N, n ≥ B/ 5/n+ 1 > c1/n, i.e.,

5/n+ 1not ∈ O(1/n).

(e) ∀a ∈ R+,∀b ∈ R+, loga n ∈ Θ(logb n) [ Note that there was an error in the original statement: both a
and b need to be larger than 1 for the statement to make sense; otherwise, logan and logbn do not take on
only positive values. ]

8. Prove or disprove the following statement:

For any functions f : N→ R+, g : N→ R+, and h : N→ R+,
if f ∈ O(h) and g ∈ O(h), then f ∈ O(g).

Solution: We disprove the statement.
Let f(n) = n2, g(n) = n, and h(n) = n3. Then, f ∈ O(h) and g ∈ O(h) but f /∈ O(g).

f ∈ O(h):
Let c = 1. Then, c ∈ R+. Let B = 1. Then, B ∈ N.

Let n ∈ N. Suppose that n ≥ 1.
Because n ≥ 1, n3 ≥ n.

Hence, n ≥ 1→ n ≤ n3 and since n is an arbitrary natural number, ∀n ∈ N, n ≥ 1→ n ≤ n3.

Therefore, ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B→ n ≤ c · n3.

g ∈ O(h):
Let c = 1. Then, c ∈ R+. Let B = 1. Then, B ∈ N.

Let n ∈ N. Suppose that n ≥ 1.
Because n ≥ 1, n3 ≥ n2.

Hence, n ≥ 1→ n2 ≤ n3 and since n is an arbitrary natural number, ∀n ∈ N, n ≥ 1→ n2 ≤ n3.

Therefore, ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B→ n2 ≤ c · n3.

f /∈ O(g):
Let c ∈ R+. Let B ∈ N.

Let n = B + dce+ 1. Then, n ∈ N.
Because c ∈ R+, dce ∈ N so n ≥ B. Because dce+ 1 > c, n > c so n2 > c · n.

Hence, ∃n ∈ N, n ≥ B ∧ n2 > c · n.

Therefore, ∀c ∈ R+,∀B ∈ N,∃n ∈ N, n ≥ B ∧ n2 > c · n.

9. Prove or disprove the following statement:

For any functions f : N→ R+, g : N→ R+, and h : N→ R+,
if f ∈ Θ(h) and g ∈ Θ(h), then f ∈ Θ(g).

Soln:
Let f, g, h be functions from N to R+.

Suppose that f ∈ Θ(h) and g ∈ Θ(h).
From the definition, let cf ∈ R+, c′f ∈ R+, Bf ∈ N be such
that ∀n ∈ N, n ≥ Bf → cfh(n) ≤ f(n) ≤ c′fh(n).
From the definition, let cg ∈ R+, c′g ∈ R+, Bg ∈ N be such
that ∀n ∈ N, n ≥ Bg → cgh(n) ≤ g(n) ≤ c′gh(n).
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Let c1 = cf/c
′
g, c2 = c′f/cg, B = max(Bf , Bg).

Then, c1 ∈ R+, c2 ∈ R+, and B ∈ N.
Let n ∈ N, and suppose that n ≥ B.
Then,
g(n) ≤ c′gh(n)[sincen ≥ Bg]
→ 1/c′gg(n) ≤ h(n)
→ cf/c

′
gg(n) ≤ cfh(n)

→ c1g(n) ≤ f(n)[sincen ≥ Bf ]
Also, cgh(n) ≤ g(n)[sincen ≥ Bg]
→ h(n) ≤ 1/cgg(n)
→ c′fh(n) ≤ c′f/cgg(n)
→ f(n) ≤ c2g(n)[sincen ≥ Bf ]
So n ≥ B → c1g(n) ≤ f(n) ≤ c2g(n) and since n is an arbitrary natural number,

∀n ∈ N, n ≥ B → c1g(n) ≤ f(n) ≤ c2g(n).

Hence, ∃c1inR+,∃c2inR+,∃B ∈ N,
∀n ∈ N, n ≥ B → c1g(n) ≤ f(n) ≤ c2g(n).
Therefore, ( f ∈ Θ(h) ∧ g ∈ Θ(h))→ f ∈ Θ(g)
and since f, g, h are arbitrary functions from N to R+,

for any f, g, h from N to R+,

if f ∈ Θ(h) and g ∈ Θ(h), then f ∈ Θ(g).

10. Prove that for any k ∈ N and any ak ∈ R+, ak−1 ∈ R+, . . . , a1 ∈ R+, a0 ∈ R+,

akn
k + ak−1n

k−1 + · · ·+ a1n+ a0 ∈ Θ(nk).

Let k ∈ N and ak ∈ R+, ak−1 ∈ R+, ..., a1 ∈ R+, a0 ∈ R+.
Let c1 = ak, c2 = ak + ak−1 + ...+ a1 + a0, B = 1

Then, c1 ∈ R+, c2 ∈ R+, and B ∈ N.
Let n ∈ N and suppose n ≥ 1.

Since ak−1 > 0, ..., a1 > 0, a0 > 0, we have:
akn

k ≤ akn
k + ak−1n

k−1 + ...+ a1n+ a0.
Because n ≥ 1, we have:
akn

k + ak−1n
k−1 + ...+ a1n+ a0

≤ akn
k + ak−1n

k + ...+ a1n
k + a0n

k

= (ak + ak−1 + ...+ a1 + a0)nk.
So n ≥ 1→ c1n

k ≤ akn
k + ...+ a1n+ a0 ≤ c2nk

Since n is an arbitrary natural number,

∀n ∈ N, n ≥ 1→ c1n
k ≤ akn

k + ...+ a0 ≤ c2nk

Hence, ∃c1 ∈ R+,∃c2 ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B → c1n
k ≤ akn

k + ...+ a1n+ a0 ≤ c2nk.
Since k, ak, ak−1, ..., a1, a0 are arbitrary, for any k ∈ N and any ak ∈ R+, ak−1 ∈ R+, ..., a1 ∈ R+, a0 ∈ R+,
akn

k + ak−1n
k−1 + ...+ a1n+ a0 ∈ Θ(nk).

11. Prove that for any k ∈ N, 1k + 2k + · · ·+ nk ∈ Θ(nk+1).

Solution:
Let k ∈ N.

Let c1 = 1/2k+1, c2 = 1. Then, c1 ∈ R+ and c2 ∈ R+. Let B = 1. Then, B ∈ N.
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Let n ∈ N. Suppose n ≥ 1.
n∑

i=1

ik ≤
n∑

i=1

nk = n · nk = nk+1.

n∑
i=1

ik ≥
∑

i=dn+1
2

enik ≥
n∑

i=dn+1
2

dn
2
ek = dn

2
e · dn

2
ek = dn

2
ek+1 ≥ nk+1

2k+1
.

Hence, n ≥ 1→ nk+1/2k+1 ≤
∑n

i=1 i
k ≤ nk+1,

and since n is an arbitrary real number, ∀n ∈ N, n ≥ 1→ nk+1/2k+1 ≤
∑n

i=1 i
k ≤ nk+1.

Therefore, ∃c1 ∈ R+,∃c2 ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B→ c1 · nk+1 ≤
∑n

i=1 i
k ≤ c2 · nk+1.

Since k is an arbitrary real number, for any k ∈ N,
∑n

i=1 i
k ∈ Θ(nk+1).

12. Let f : N→ R≥0, and let

O(f) = {g : N→ R≥0|∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B → g(n) ≤ cf(n)}

Prove or disprove (in structured proof form) the following claims:

(a) Suppose f, g : N→ R≥0. Then g ∈ O(f)⇒ g(n3) 6∈ O(f)
Sample solution: The claim is false. I prove the negation. Let F = {h : N→ R≥0}.

∃f ∈ F,∃g ∈ F, g ∈ O(f) ∧ g(n3) ∈ O(f).

Let f(n) = g(n) = 1 for n ∈ N. (constant functions).

Then f, g ∈ F , since 1 ∈ R+. Let c = 1 and let B = 0.
Then c ∈ R+ and B ∈ N.
Let n ∈ N. Assume n ≥ B = 0.

Then g(n) = 1 ≤ cf(n) = 1. (by choice of f , g, and c).
Also g(n3) = 1 ≤ cf(n). (by choice of f , g, and c).

So n ≥ B ⇒ g(n) ≤ cf(n).
Also n ≥ B ⇒ g(n3) ≤ cf(n)
Since n is an arbitrary element of N, ∀n ∈ N, n ≥ B ⇒ g(n) ≤ cf(n).
Also, since n is an arbitrary element of N, ∀n ∈ N, n ≥ B ⇒ g(n3) ≤ cf(n).

Since c ∈ R+ and B ∈ N, ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ g(n) ≤ cf(n).
So g ∈ O(f). (definition of O(f)).
Since c ∈ R+ and B ∈ N, ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ g(n3) ≤ cf(n).
So g(n3) ∈ O(f). (definition of O(f)).

Since f and g are in F , ∃f ∈ F,∃G ∈ F, g ∈ O(f) ∧ g(n3) ∈ O(f).

(b) Suppose f, g, h : N→ R≥0. Then (g ∈ O(f) ∧ h ∈ O(f))⇒ max(g, h) ∈ O(f).
Sample solution: The statement is true. Define (for convenience) F = {h : N→ R+}.
Let f, g ∈ F . Assume g ∈ O(f) ∧ h ∈ O(f).

Then g ∈ O(f).
So ∃c ∈ R+, B ∈ N,∀n ∈ N, n ≥ B ⇒ g(n) ≤ cf(n). (definition of g ∈ O(f).).
Let c1 ∈ R+ and B1 ∈ N be such that ∀n ∈ N, n ≥ B1 ⇒ g(n) ≤ c1f(n).
Then h ∈ O(f).
So ∃c ∈ R+, B ∈ N,∀n ∈ N, n ≥ B ⇒ h(n) ≤ cf(n). (definition of g ∈ O(f)).
Let c2 ∈ R+ and B2 ∈ N be such that ∀n ∈ N, n ≥ B2 ⇒ h(n) ≤ c2f(n).
Let c = c1 + c2. Let B = max(B1, B2).
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Then c ∈ R+. (sum of positive real numbers is a positive real number).
Then B ∈ N. (sum of natural numbers is a natural number).
Let n ∈ N. Assume n ≥ B.

Then n ≥ B1. (Since B = max(B1, B2)).
So g(n) ≤ c1f(n). (shown above).
So g(n) ≤ (c1 + c2)f(n). (since c2f(n) is non-negative).
Then n ≥ B2. (since B = max(B1, B2)).
So h(n) ≤ c2f(n). (shown above).
So h(n) ≤ (c1 + c2)f(n) (since c1f(n) is non-negative).
So max(g(n), h(n)) ≤ (c1 + c2)f(n) = cf(n). (by the definition of max and
choice of c).

Since n is an arbitrary element of N, ∀n ∈ N, n ≥ B ⇒max(g(n), h(n)) ≤ cf(n).
Since c ∈ R+ and B ∈ N, ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ max(g(n), h(n)) ≤ cf(n).
So max(g, h) ∈ O(f). (definition of O(f)).
Thus (g ∈ O(f) ∧ h ∈ O(f))⇒ max(g, h) ∈ O(f).

Since f , g, and h are arbitrary elements of F , ∀f ∈ F,∀g ∈ F,∀h ∈ F, (g ∈ O(f) ∧ h ∈ O(f)) ⇒
max(g, h) ∈ O(f).

(c) Suppose f, f ′, g, g′ : N→ R≥0, and f ◦ g(n) = f(g(n)), f ′ ◦ g′(n) = f ′(g′(n)). Then (f ∈ O(f ′)∧ g ∈
O(g′))⇒ f ◦ g ∈ O(f ′ ◦ g′).
Sample solution: The claim is false. Let F = {h : N 7→ R≥0}. I will prove the negation:

∃f ∈ F,∃f ′ ∈ F,∃g ∈ F,∃g′ ∈ F, f ∈ O(f ′) ∧ g ∈ O(g′) ∧ f ◦ g 6∈ O(f ′ ◦ g′)

Sample solution: The statement is false. I prove the negation (where F = {h : N 7→ R≥0}):

∃f, f ′, g, g′ ∈ F, f ∈ O(f ′) ∧ g ∈ O(g′) ∧ f ◦ g 6∈ O(f ′ ◦ g′)

Let f(n) = 2n = f ′(n). Let g(n) = 2n. Let g′(n) = n.

Then f, f ′, g, g′ ∈ F . (Their range if N ⊂ R≥0).
Let c1 = 1. Let B1 = 0.

Then c1 ∈ R+ and B1 ∈ N.
Let n ∈ N. Assume n ≥ B1 = 0.

Then f(n) = 2n ≤ c1f ′(n) = 2n. (by choice of f, f ′, and c).
So n ≥ B1 ⇒ f(n) ≤ cf ′(n).
Since n is an arbitrary element of N, n ≥ B1⇒ f(n) ≤ cf ′(n).

Since c1 ∈ R+ and B1 ∈ N, ∃c ∈ R+,∃B ∈ N, n ≥ B ⇒ f(n) ≤ cf ′(n).
So f ∈ O(f ′). (definition).
Let c2 = 2. Let B2 = 0.

Then c2 ∈ R+ and B2 ∈ N.
Let n ∈ N. Assume n ≥ B2.

Then g(n) = 2n ≤ 2n = c2g
′(n). (by choice of g, g′, and c2).

So n ≥ B2 ⇒ g(n) ≤ c2g′(n).
Since n is an arbitrary element of N, ∀n ∈ N, n ≥ B2 ⇒ g(n) ≤ c2g′(n).

Since c2 ∈ R+ and B2 ∈ N, ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B → g(n) ≤ cg′(n).
So g ∈ O(g′). (definition).
Let c ∈ R+. Let B ∈ N.

Let n = max(d[log2 c] + 1e, B).
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Then n ∈ N. (maximum of two natural numbers).
Then n ≥ B. (definition of max).
Then 2n ≥ 2(log2 c)+1 = 2c > c. (by choice of n).
So 2n × 2n > c2n. (multiply the inequality by 2n).
So f(g(n)) = f(2n) = 22n = 2n × 2n > c2n = c2g′(n) = f ′(g′(n)). (by the
previous inequality and choice of f, f ′, g, g′).
So n ≥ B and f(g(n)) > f ′(g′(n)).

Since n ∈ N, ∃n ∈ N, n ≥ B ∧ f(g(n)) > f ′(g′(n)).
Since c is an arbitrary element of R+ andB is an arbitrary element of N, ∀c ∈ R+,∀B ∈ N,∃n ∈
N, n ≥ B ∧ f(g(n)) > f ′(g′(n))
So f ◦ g 6∈ O(f ′ ◦ g′). (definition of O(f ′g′)).

Since f, f ′, g, g′ are elements of F, ∃f, f ′, g, g′ ∈ F, f ∈ O(f ′) ∧ g ∈ O(g′) ∧ f ◦ g 6∈ O(f ′ ◦ g′)
(d) Suppose f, g, h : N→ R≥0 and gh(n) = g(n)h(n). Then (g ∈ O(f) ∧ h ∈ O(f))→ gh ∈ O(f).

Sample solution: The statement is false. Let F = {h : N 7→ R≥0}. I will prove the negation:

∃f, g, h ∈ F, g ∈ O(f) ∧ h ∈ O(f) ∧ gh 6∈ O(f)

Let f(n) = g(n) = h(n) = n.

Then f, g, h ∈ F . (since they map N to N ⊂ R≥0).
Let c = 1. Let B = 0.

Then c ∈ R+ and B ∈ N.
Let n ∈ N. Assume n ≥ B = 0.

Then g(n) = n ≤ n = cf(n). (by the choice of f, g, and c).
Then h(n) = n ≤ n = cf(n). (by the choice of f, h, and c).

So n ≥ B ⇒ g(n) ≤ cf(n).
Since n is an arbitrary element of N, ∀n ∈ N, n ≥ B ⇒ g(n) ≤ cf(n).
So n ≥ B ⇒ h(n) ≤ cf(n).
Since n is an arbitrary element of N, ∀n ∈ N, n ≥ B ⇒ h(n) ≤ cf(n).

Since c ∈ R+ and B ∈ N, ∃c ∈ R+, B ∈ N,∀n ∈ N, n ≥ B ⇒ g(n) ≤ cf(n).
So g ∈ O(f). (definition)
Since c ∈ R+ and B ∈ N, ∃c ∈ RR+, B ∈ N,∀n ∈ N, n ≥ B ⇒ h(n) ≤ cf(n).
So h ∈ O(f). (definition).
Let c ∈ R+. Let B ∈ N.

Let n = max(B, dce+ 1).
Then n ∈ N. (maximum of natural numbers, since c is positive, its ceiling is a
natural number, and the sum of natural numbers is a natural number).
Then n ≥ B (definition of max).
Then g(n)h(n) = n2 = n× n > cn (since n ≥ c+ 1 > c).
So g(n)h(n) > cf(n).

Since n ∈ N, ∃n ∈ N, n ≥ B ∧ g(n)h(n) > cf(n).
Since c is an arbitrary element of R+ andB is an arbitrary element of N, ∀c ∈ R+,∀B ∈ N,∃n ∈
N, n ≥ B ∧ g(n)h(n) > cf(n).
So g, h 6∈ O(f). (definition of O(f), negated).

Since f, g, h ∈ F,∃f, g, h ∈ F, g ∈ O(f) ∧ h ∈ O(f) ∧ gh 6∈ O(f).
(e) Suppose f, g : N→ R≥0 and f ′(n) = bf(n)c, g′(n) = bg(n)c. Then g ∈ O(f)→ g′ ∈ O(f ′).

Sample solution: The statement is false. Let F = {h : N 7→ R≥0}. I prove the negation:

∃f, g, f ′, g′ ∈ F, f ′(n) = bf(n)c, g′(n) = bg(n)c ∧ g ∈ O(f) ∧ g′ 6∈ O(f ′)

Let f(n) = 0.5, f ′(n) = bf(n)c = 0, g(n) = 1, g′(n) = bg(n)c = 1. (constant functions).
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Then f, f ′, g, g′ ∈ F (they map natural numbers to non-negative real numbers).
Let c = 2. Let B = 0.

Let n ∈ N. Assume n ≥ B = 0.
Then g(n) = 1 ≤ 1 = cf(n). (by choice of f, g, c).

So n ≥ B ⇒ g(n) ≤ cf(n).
Since n is an arbitrary element of N, ∀n ∈ N, n ≥ B ⇒ g(n) ≤ f(n).

Since c ∈ R+ and B ∈ N, ∃c ∈ R+,∃B ∈ N,∀n ∈ N, n ≥ B ⇒ g(n) ≤ cf(n).
So g ∈ O(f). (definition).
Let c′ ∈ R+. Let B′ ∈ N

Let n = B′.
Then n ∈ N (since B′ is).
Also n ≥ B′ (since n = B′).
Also 1/c′ > 0 (since reciprocal of a positive number is positive).
So 1 > c′0. (multiplying both sides by positive c′).
So g′(n) = 1 > c′0 = c′f ′(n).

Since n ∈ N, ∃n ∈ N, n ≥ B′ ∧ g′(n) > c′f ′(n).
Since c′ is an arbitrary element of R+ and B′ is an arbitrary element of N, ∀c ∈ R+,∀B ∈
N,∃n ∈ N, n ≥ B ∧ g′(n) > cf ′(n).
So g′ 6∈ O(f ′). (definition of O(f ′), negated).

Since f, f ′, g, g′ ∈ F , ∃f, f ′, g, g′ ∈ F, f ′(n) = bf(n)c ∧ g′(n) = bg(n)c ∧ g ∈ O(f) ∧ g′ 6∈ O(f ′).
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Floating Point Systems

1. Recall that the binary number (bk−1bk−2 . . . b1b0)2 has value bk−12k−1 + bk−22k−2 + · · ·+ b121 + b020.

(a) What decimal numbers are represented by the binary numbers (001010)2, (010100)2, (011110)2, (101000)2,
(110010)2? Show your computations.

SOLN:

(001010)2 = 8 + 2 = 10
(010100)2 = 16 + 4 = 20
(011110)2 = 16 + 8 + 4 + 2 = 30
(101000)2 = 32 + 8 = 40
(110010)2 = 32 + 16 + 2 = 50

(b) Give binary representations for the decimal numbers 10, 42, 170, 682. Show your computations. SOLN:

10 = 8 + 2 = (1010)2
42 = 32 + 8 + 2 = (101010)2

170 = 128 + 32 + 8 + 2 = (10101010)2
682 = 512 + 128 + 32 + 8 + 2 = (1010101010)2

(c) Multiply the two binary numbers (10110)2 and (101)2, in binary, i.e., carry out all of the operations
(including addition) in binary notation, without converting to decimal notation. Show your computation.
SOLN:

(10110)2 ∗ (101)2 = (1101110)2 :

10110
*00101

10110
1011000
1101110

(d) If (bk−1bk−2 . . . b1b0)2 is a binary representation for natural number x (where each bi is either 0 or 1), give
a binary representation of the number 4x+ 3. SOLN:

If

x = (bk−1bk−2...b1b0)2, then
4x = (bk−1bk−2...b1b000)2

4x+ 3 = (bk−1bk−2...b1b011)2.
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2. Consider a normalized floating point system with base β = 10, t = 3, emin = −4 and emax = +2.

(a) Evaluate this polynomial, 3.12x3 − 2.11x2 + 4.01x + 10.2, with x = 1.32. Proceed from left to right,
using round to nearest. Show your work. Soln:
x is represented as 1.32× 100

x2 = 1.32 · 1.32 = 1.7424 is represented as 1.74× 100

x3 = 1.32 · 1.74 = 2.2968 is represented as 2.30× 100

3.12 · x3 = 3.12 · 2.3 = 7.176 is represented as 7.18× 100

−2.11 · x2 = −2.11 · 1.74 = −3.6714 is represented as −3.67× 100

4.01 · x = 4.01 · 1.32 = 5.2932 is represented as 5.29× 100

10.2 is represented as 1.02× 101

3.12 · x3 − 2.11 · x2 = 7.18− 3.67 = 3.51 is represented as 3.51× 100

3.12 · x3 − 2.11 · x2 + 4.01 · x = 3.51 + 5.29 = 8.8 is represented as 8.8× 100

3.12 · x3 − 2.11 · x2 − 4.01 · x+ 10.2 = 8.8 + 10.2 = 19 is represented as 1.9× 101

(b) Evaluate the polynomial proceeding from right to left, using round to nearest. Show your work. Soln:
4.01 · x+ 10.2 = 5.29 + 10.2 = 15.49 is represented as 1.55× 101

−2.11 · x2 + 4.01 · x+ 10.2 = −3.67 + 1.55× 101 = 11.83 is represented as 1.18× 101

3.12 · x3 − 2.11 · x2 + 4.01 · x+ 10.2 = 7.18 + 1.18× 101 = 18.98 is represented as 1.90× 101

(c) Which calculation is more stable? Explain your answer. Soln:
For this value of x, both calculations have the same result. Therefore, the result has the same relative error,
and the calculations are equally stable.

3. Consider a normalized floating point system with base β = 3, t = 3, emin = −3 and emax = +2.

(a) What is the smallest (base 10) number that can be represented in this system? Show your work. Soln:
The representation in this floating point system of the smallest number is 1.00 × 3−3 which in base 10 is
1/27.

(b) What is the largest (base 10) number that can be represented in this system? Show your work. Soln:
The representation of the largest number in this floating point system is 2.22 × 32 which in base 3 is 222
and in base 10 is 2 · 32 + 2 · 31 + 2 · 30 = 18 + 6 + 2 = 26.

(c) Give examples of real (base 10) numbers, that will cause overflow and underflow when represented in this
floating point system. Show your work. Soln:
In this system the smallest positive number is represented as 1.00 × 3−3. Hence any number positive
number between 0 and 1/27 cannot be represented. So, an example of underflow is the number 1/28.
Overflow occurs at the representation of any number larger than 26. So, an example of overflow is the
number 27.

4. Consider the base −2 representation, where bi ∈ {0, 1}, and

(bnbn−1 · · · b1b0)−2 =
n∑

i=0

bi(−2)i.

(a) How many positive integers can be written in an n-digit base −2 representation (including representa-
tions with leading zeros on the left)? How many negative numbers can be written in an n-digit base −2
representation (including representations with leading zeros on the left). Justify your answer.

Sample solution: You have at your disposal bits (bn−1 · · · b0)−2 =
∑n−1

i=0 bi(−2)i, where bi ∈ {0, 1}.
There are two cases to consider, depending on whether n is even or odd:
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Case 1, n is odd: In this case n − 1 is even. There are 20 positive base −2 numbers of the form
(0 · · · 01)−2. In general there are 22k positive base−2 numbers of the form (0 · · · 01b2k−1 · · · b0)−2,
where 0 ≤ 2k ≤ n − 1. We know these numbers are positive because 1 × (−2)2k dominates all
the other terms. Summing this geometric series gives us:

(n−1)/2∑
k=0

22k =
(n−1)/2∑

k=0

4k =
4(n+1)/2 − 1

3

. . . positive numbers.
Similarly, there are 21 negative base −2 numbers of the form (0 · · · 01b0)−2. In general there
are 22k+1 negative base −2 numbers of the form (0 · · · 01b2k · · · b0)−2, where 0 ≤ 2k ≤ n − 3.
Summing this geometric series give us

(n−3)/2∑
k=0

22k+1 = 2
(n−3)/2∑

k=0

4k = 2
4(n−1)/2 − 1

3

. . . negative numbers.
Case 2, n is even: In this case n−1 is odd, so we must sum the geometric series with different upper

bounds. There are 22k+1 negative base −2 numbers of the form (0 · · · 1b2k · · · b0)−2, where
0 ≤ 2k ≤ n− 2, so we sum the geometric series to get

(n−2)/2∑
k=0

22k+1 = 2
(n−2)/2∑

k=0

4k = 2
4n/2 − 1

3

. . . negative numbers.
There are 22k positive base −2 numbers of the form (0 · · · 01b2k−1 · · · b0)−2, where 0 ≤ 2k ≤
n− 2, so summing the geometric series gives us

(n−2)/2∑
k=0

22k =
(n−2)/2∑

k=0

4k =
4n/2 − 1

3

(b) For natural number k, what is the minimum number of digits needed to represent k in base −2 representa-
tion? Justify your answer.

Sample solution: First observe that all the base −2 numbers with an even number of digits are negative,
so we’ll need k to be represented with 2j + 1 digits, for some natural number j. The largest number
that can be represented with 2j + 1 digits is (101 · · · 01 · · · 01)−2, which is

∑j
i=0(−2)2j =

∑j
i=0 4j

= (4j+1 − 1)/3. The smallest number (still positive, since it is dominated by 1× (−2)2j) that can be
represented with 2j+ 1 digits is (110 · · · 10 · · · 10)−2 = (−2)2j +

∑j−1
i=0 (−2)2i+1 = 4j − 2

∑j−1
i=0 4i

= 4j − 2(4j − 1)/3 = (4j + 2)/3. This means that:

4j+1 − 1
3

≥ k ≥ 4j + 2
3

⇒ 4j+1 − 1 ≥ 3k ≥ 4j + 2
⇒ blog4(4j+1 − 1)c ≥ blog4(3k)c ≥ blog4(4j + 2)c

j ≥ blog4 3kc ≥ j

Thus k requires 2blog4 3kc+ 1 base −2 digits.

5. How many non-zero numbers are there in the normalized floating-point system with β = 4, t = 4, emin = −4,
emax = 4? Show your work.

Solution: There are:
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• 2 possibilities for the sign (±),

• 3 possibilities for the first digit (1, 2, 3), since it must be different from 0,

• 4 possibilities for each of the other three digits,

• 9 possibilities for the exponent (−4–4),

for a total of 2× 3× 4× 4× 4× 9 = 3456 non-zero numbers.

6. (a) Does the addition of numbers exactly representable in a floating-point system always produce numbers
exactly representable in the system? Justify.
Solution: No.
Consider the floating-point system with β = 10, t = 3, emin = −2, emax = +2. Let x = 500 =
5.00× 102 and y = 500 = 5.00× 102. Then, x and y are numbers exactly representable in the system but
x+ y = 500 + 500 = 1000 is not exactly representable because of overflow.
Alternatively, if x = 100 = 1.00× 102 and y = 0.01 = 1.00× 10−2, then x+ y = 100.01 is not exactly
representable in the system even though it does not cause overflow.

(b) Does the subtraction of numbers exactly representable in a floating-point system always produce numbers
exactly representable in the system? Justify.
Solution: No.
Consider the floating-point system with β = 10, t = 3, emin = −2, emax = +2. Let x = −500 =
−5.00 × 102 and y = 500 = 5.00 × 102. Then, x and y are numbers exactly representable in the system
but x− y = −500− 500 = −1000 is not exactly representable because of overflow.
Alternatively, if x = 100 = 1.00 × 102 and y = 0.01 = 1.00 × 10−2, then x − y = 99.99 is not exactly
representable in the system even though it does not cause overflow.

(c) Does the multiplication of numbers exactly representable in a floating-point system always produce num-
bers exactly representable in the system? Justify.
Solution: No.
Consider the floating-point system with β = 10, t = 3, emin = −2, emax = +2. Let x = 2 = 2.00× 100

and y = 500 = 5.00 × 102. Then, x and y are numbers exactly representable in the system but x · y =
2 · 500 = 1000 is not exactly representable because of overflow.
Alternatively, if x = 0.01 = 1.00× 10−2 and y = 0.01 = 1.00× 10−2, then x · y = 0.0001 is not exactly
representable in the system because of underflow.
Alternatively, if x = 101 = 1.01× 102 and y = 0.101 = 1.01× 10−1, then x · y = 10.201 is not exactly
representable in the system even though it does not cause overflow or underflow.

(d) Does the division of numbers exactly representable in a floating-point system always produce numbers
exactly representable in the system? Justify.
Solution: No.
Consider the floating-point system with β = 10, t = 3, emin = −2, emax = +2. Let x = 500 =
5.00 × 102 and y = 0.1 = 1.00 × 10−1. Then, x and y are numbers exactly representable in the system
but x/y = 500/0.1 = 5000 is not exactly representable because of overflow.
Alternatively, if x = 0.1 = 1.00 × 10−1 and y = 100 = 1.00 × 102, then x/y = 0.001 is not exactly
representable in the system because of underflow.
Alternatively, if x = 1 = 1.00 × 100 and y = 3 = 3.00 × 100, then x/y = 0.333 . . . is not exactly
representable in the system even though it does not cause overflow or underflow.

7. In lecture, we calculated an upper bound of β−p+1/2 for the relative error introduced by rounding to nearest
in a floating-point system. Compute an upper bound for “round towards zero” (i.e., round down for positive
numbers, round up for negative numbers).

Solution:
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Case 1: If x > 0, then let
x = +d0.d1d2 . . . dt−1dt · · · × βe

where d0 6= 0 and di 6= 0 for some i ≥ t (otherwise x can be represented exactly). Then, x is rounded to

d0.d1d2 . . . dt−1 × βe

with an absolute error of
0.00 . . . 0dt · · · × βe ≤ 1.00 . . . 0× βe−t+1.

Since x ≥ 1.00 . . . 0× βe, the relative error is therefore at most

βe−t+1

|x|
≤ βe−t+1

1.0× βe
= β−t+1.

Case 2: If x < 0, then the same argument as for x > 0 applies: let

x = −d0.d1d2 . . . dt−1dt · · · × βe

where d0 6= 0 and di 6= 0 for some i ≥ t (otherwise x can be represented exactly). Then, x is rounded to

−d0.d1d2 . . . dt−1 × βe

with an absolute error of
0.00 . . . 0dt · · · × βe ≤ 1.00 . . . 0× βe−t+1.

Since x ≤ −1.00 . . . 0× βe, the relative error is therefore at most

βe−t+1

|x|
≤ βe−t+1

1.0× βe
= β−t+1.

In all cases, the relative error in “round-to-zero” is always no more than β1−t.

8. Consider evaluating the function f(x) = +
√

1 + x−
√
x. Is it stable to calculate it in Java with the expression

Math.sqrt(x+1)-Math.sqrt(x)? Can you find a more stable approach? Justify.

Solution: The computation Math.sqrt(x+1)-Math.sqrt(x) is not stable because +
√

1 + x will gener-
ally be close to −

√
x in magnitude, so there will be catastrophic cancellation.

However,

(+
√

1 + x−
√
x)

+
√

1 + x+
√
x

+
√

1 + x+
√
x

=
(1 + x)− x

+
√

1 + x+
√
x

=
1

+
√

1 + x+
√
x

so the Java expression 1.0 / (Math.sqrt(x+1) + Math.sqrt(x)) computes the same value in a
stable manner.
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