products of sums

Work with 1 or 2 other students, and choose one of your group as the recorder. The recorder should keep a written record of his/her group's discussion of the problem below, which they may use as the basis for a contribution to the problem-solving wiki (see below). Use the following headings to organize the discussion:

- Understand the problem. Are the various ways to represent it?
- Devise a plan or two. What is the "best case" result you expect from your plan?
- Carry out, and verify, your plan.
- Look back, figure out when and how you became stuck, and what insights represented a breakthrough.

The list of positive integers that add up to 1 is (1), and the product of this list (if you allow unary products) is also 1 .

There are two lists of positive integers that add up to 2, and they yield two different products: (2) (with product 2), and (1,1) (with product 1).

There are several lists of positive integers that add up to 3 , and they yield several different products: (3) (with product 3), $(2,1)$ (with product 2), and $(1,1,1)$ (with product 1).

If n is a positive integer, what is the maximum product that can be formed of a list of positive integers that sum to n ?

You can continue working on this problem at:

```
https://wwwcgi.cdf.toronto.edu/~heap/cgi-bin/Solvent/wiki.pl?Problem_Solving_Home_Page/PaperFolding
Userid: sleuth
Password: eureka
```

Hint 1, organize: Even for fairly small number n, your will have quite a large list of numbers that sum to n. Do you have some organizing principle for your lists?

Hint 2, ECONOMIZE: Are there some lists that you can remove from consideration right away?

