
CSC165 winter 2013
Mathematical expression

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/165/W13/

416-978-5899

Course notes, chapter 4

http://www.cdf.toronto.edu/~heap/165/W13/
http://www.cdf.toronto.edu/~heap/165/W13/Notes/notes.pdf


Outline

more asymptotics

notes



worst case

denote the worst-case complexity for program P with input x 2 I , where

the input size of x is n as WP (n) = maxftP (x ) j x 2 I ^ size(x ) = ng

The upper bound WP 2 O(U ) means

9c 2 R+; 9B 2 N; 8n 2 N;n � B

) maxftP (x ) j x 2 I ^ size(x ) = ng � cU (n)

That is: 9c 2 R+; 9B 2 N; 8x 2 I ; size(x ) � B

) tP (x ) � cU (size(x ))

The lower bound WP 2 
(L) means

9c 2 R+;9B 2 N; 8n 2 N;n � B

) maxftP (x ) j x 2 I ^ size(x ) = ng � cL(n)

That is: 9c 2 R+; 9B 2 N; 8n 2 N;n � B

) 9x 2 I ; size(x ) = n ^ tP (x ) � cL(n)



bounding a sort

def IS(A) :

""" IS(A) sorts the elements of A in non-decreasing order """

1. i = 1

2. while i < len(A) :

3. t = A[i]

4. j = i

5. while j > 0 and A[j-1] > t :

6. A[j] = A[j-1] # shift up

7. j = j-1

8. A[j] = t

9. i = i+1

I want to prove that WIS 2 O(n
2).



big-oh of n2

We know, or have heard, that all quadratic functions grow at \roughly" the

same speed. Here's how we make \roughly" explicit.

O(n2) = ff : N 7! R
�0 j 9c 2 R+;9B 2 N; 8n 2 N;n � B ) f (n) � cn

2g

Those are a lot of symbols to process. They say that O(n2) is a set of

functions that take natural numbers as input and produce non-negative

real numbers as output. An additional property of these functions is that

for each of them you can �nd a multiplier c, and a breakpoint B , so that if

you go far enough to the right (beyond B) the function is bounded above

by cn2.

In terms of limits, this says that as n approaches in�nity, f (n) is no bigger

than cn2 (once you �nd the appropriate c).



prove WIS 2 O(n
2)



prove WIS 2 
(n2)



maximum slice

def max_sum(L) :

"""maximum sum over slices of L"""

max = 0

i = 0

while i < len(L) :

j = i + 1

while j <= len(L) :

sum = 0

k = i

while k < j :

sum = sum + L[k]

k = k + 1

if sum > max :

max = sum

j = j + 1

i = i + 1

return max



Notes


	more asymptotics
	notes

