CSC165 winter 2013

Mathematical expression

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/165/W13/ 416-978-5899

Course notes, chapter 4

Outline

more asymptotics

notes

UNIVERSITY OF TORONTO
\square

worst case

denote the worst-case complexity for program P with input $x \in I$, where the input size of x is n as $W_{P}(n)=\max \left\{t_{P}(x) \mid x \in I \wedge \operatorname{size}(x)=n\right\}$

The upper bound $W_{P} \in \mathcal{O}(U)$ means

$$
\begin{aligned}
& \exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \\
& \Rightarrow \max \left\{t_{P}(x) \mid x \in I \wedge \operatorname{size}(x)=n\right\} \leq c U(n) \\
& \text { That is: } \exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall x \in I, \operatorname{size}(x) \geq B \\
& \quad \Rightarrow t_{P}(x) \leq c U(\operatorname{size}(x))
\end{aligned}
$$

The lower bound $W_{P} \in \Omega(L)$ means

$$
\begin{aligned}
& \exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \\
& \quad \Rightarrow \max \left\{t_{P}(x) \mid x \in I \wedge \operatorname{size}(x)=n\right\} \geq c L(n)
\end{aligned}
$$

That is: $\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B$

$$
\Rightarrow \exists x \in I, \operatorname{size}(x)=n \wedge t_{P}(x) \geq c L(n)
$$

bounding a sort

```
def IS(A)
```

 """ IS (A) sorts the elements of \(A\) in non-decreasing orc
 1. \(i=1\)
 3. $t=A[i] \quad n-1$
4. $\quad j=i$
5.
6.
7.
8. $A[j]=t \longrightarrow n-1$
9. while $j>0$ and $A[j-1]>t:]-j=i, i-1, \cdots, 1$
$A[j]=A[j-1]$ \# shift up
$j=j-1$
$i=i+1 \quad n-1$

I want to prove that $W_{\text {IS }} \in \mathcal{O}\left(n^{2}\right)$.

big-oh of n^{2}

We know, or have heard, that all quadratic functions grow at "roughly" the same speed. Here's how we make "roughly" explicit.

Those are a lot of symbols to process. They say that $\mathcal{O}\left(n^{2}\right)$ is a set of functions that take natural numbers as input and produce non-negative real numbers as output. An additional property of these functions is that for each of them you can find a multiplier c, and a breakpoint B, so that if you go far enough to the right (beyond B) the function is bounded above by $c n^{2}$.

In terms of limits, this says that as n approaches infinity, $f(n)$ is no bigger than cn^{2} (once you find the appropriate c).
prove $W_{\text {IS }} \in \mathcal{O}\left(n^{2}\right)^{\text {Prove }} \exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N},|A|=n \wedge n \geqslant B$

$$
\Rightarrow W_{1 S}(A) \leqslant C n^{2}
$$

Pick $C=\frac{11}{1}$. Then $c \in \mathbb{R}^{+}$fig use ont later Pick $B=1$. Then $B \in \mathbb{N}$. $\#$ also later.
assume n is a natural number. \# in orca to infrotur \forall. assume $|A|=n \geq B . \#$ in order to intro \Rightarrow.

Then line 1 contributes ≤ 1 step.
Then lines $2,3,4,8,9$ execute ($n-1$) times for $i=1, \ldots, n-1=+5(n-1)+1$ loop guard.
fins $5,6,7$ contribute $3 i+1 \quad \Sigma^{\text {loopguard }}$

$$
\begin{aligned}
& \leq 2+5 n+n(3 i+1) \text {. } \\
& \leqslant n(5+3 n+1)+2 \\
& =3 n^{2}+6 n+2 \\
& \leqslant 11 n^{2} \\
& \text { \# since } n \geq 1 \\
& =c n^{2} \#
\end{aligned}
$$

prove $W_{\text {IS }} \in \Omega\left(n^{2}\right)$

U UNIVERSITY OF TORONTO

maximum slice

```
def max_sum(L) :
    """maximum sum over slices of L"""
    max = 0
    i = 0
    while i < len(L) :
        j = i + 1
        while j <= len(L) :
            sum = 0
            k = i
            while k < j :
            sum = sum + L[k]
            k = k + 1
            if sum > max :
            max = sum
            j = j + 1
        i = i + 1
    return max
```


