Office hours/W2-4 BA4270 MTWR-4-6-Help Centre CSC165 winter 2013 Extra TA office hours announce RSN

Mathematical expression

Danny Heap heap@cs.toronto.edu BA4270 (behind elevators) http://www.cdf.toronto.edu/~heap/165/W13/ 416-978-5899

Course notes, chapter 3, 4

イロト 不得下 イヨト イヨト

Outline

inference rules

asymptotics

Computer Science UNIVERSITY OF TORONTO

$\begin{array}{l} \textbf{proof about limits} \\ \forall \varepsilon \in \mathbb{R}^+, \exists \delta \in \mathbb{R}^+, \forall y \in \mathbb{R}, |y - \pi| < \delta \Rightarrow |y^2 - \pi^2| < \varepsilon \end{array}$

Assume $\varepsilon \in \mathbb{R}^+$ # to introduce \forall Pick $\delta = ? \#$ to introduce \exists Then $\delta \in \mathbb{R}^+$ # figure out why later Assume $y \in \mathbb{R}$ # to introduce \forall Assume $|y - \pi| < \delta \quad \#$ to introduce \Rightarrow Then $|y^2 - \pi^2| < \varepsilon$ Then $|y - \pi| < \delta \Rightarrow |y^2 - \pi^2| < \varepsilon$ # introduced \forall Then $\forall y \in \mathbb{R}, |y - \pi| < \delta \Rightarrow |y^2 - \pi^2| < \varepsilon \quad \# \text{ introduced } \forall$ Then $\exists \delta \in \mathbb{R}^+, \forall u \in \mathbb{R}, |u - \pi| < \delta \Rightarrow |u^2 - \pi^2| < \varepsilon$ # introduced \exists Conclude $\forall \varepsilon \in \mathbb{R}^+, \exists \delta \in \mathbb{R}^+, \forall y \in \mathbb{R}, |y - \pi| < \delta \Rightarrow |y^2 - \pi^2| < \varepsilon$ # introduced \forall

うして ふゆう ふほう ふほう ふしつ

fill in the \vdots

Computer Science UNIVERSITY OF TORONTO Sometimes your argument has to split to take into account possible properties of your generic element:

$$orall n \in \mathbb{N}, n^2 + n$$
 is even

A natural approach is to factor $n^2 + n$ as n(n + 1), and then consider the case where n is odd, then the case where n is even.

$\mathbf{scratch}$

get wrong right

Be careful proving a claim false. Consider the claim, for some suitably defined X, Y and P, Q:

$$S: \qquad orall x \in X, orall y \in Y, P(x,y) \Rightarrow Q(x,y)$$

To disprove S, should you prove:

$$orall x \in X, orall y \in Y, P(x,y) \Rightarrow
eg Q(x,y)$$

What about

$$orall x \in X, orall y \in Y,
eg (P(x,y) \Rightarrow Q(x,y))$$

(日)、(四)、(日)、(日)

э

Explain why, or why not.

Define
$$T(n)$$
 by:
 $\forall n \in \mathbb{N}$ $T(n) \Leftrightarrow \exists i \in \mathbb{N}, n = 7i + 1.$

Take some scrap paper, don't write your name on it, and fill in as much of the proof of the following claim as possible:

$$\mathfrak{S1}$$
 $\forall n \in \mathbb{N}, T(n) \Rightarrow T(n^2)$

Now fill in as much of the **disproof** of the following claim as possible:

(日)、(四)、(日)、(日)、

ъ

$$orall n \in \mathbb{N}, \, T(n^2) \Rightarrow T(n)$$

allowed inference

At this point you've been introduced to some rules of inference, that allow you to reach conclusions in certain situations. You may use these (see pages 44-46 of the course notes) to guide your thinking, or as marginal notes to justify certain steps:

conjunction elimination: If you know $A \wedge B$, you can conclude A separately (or B separately).

existential instantiation: If you know that $\exists k \in X, P(k)$, then you can certainly pick an element with that property, let $k' \in X, P(k')$. # Sometimes just use this Sympole

disjunction elimination: If you know $A \lor B$, the additional information $\neg A$ allows you to conclude B.

implication elimination: If you know $A \Rightarrow B$, the additional information Aallows you to conclude B. On the other hand, the additional information $\neg B$ allows you to conclude $\neg A$.

• • • • • • • • • • • • •

universal elimination: If you know $\forall x \in X, P(x)$, the additional information $a \in X$ allows you to conclude P(a).

more inferences $(\exists \chi...) \rightarrow ($ Here are some rules that allow you to introduce new logical structures \mathcal{C}_{M} cecular implication introduction: If you assume A and, under that assumption, \underline{B} follows, than you can conclude $A \Rightarrow B$. $\mathcal{C}_{ON} \leq \mathcal{C}_{QM} \mathcal{C}_{M}$.

universal introduction: If you assume that a is a generic element of D and, under that assumption, derive P(a), then you can conclude $\forall a \in D, P(a)$.

existential introduction: If you show $x \in X$ and you show P(x), then you can conclude $\exists x \in X, P(x)$.

conjunction introduction: If you know A and you know B, then you can conclude $A \wedge B$.

disjunction introduction: If you know A you can conclude $A \lor B$.

sorting strategies

Which algorithm do you use to sort a 5-card euchre hand?

- insertion sort
- selection sort
- some other sort?

If you use one of the first two, the number of "steps" you execute will more than quadruple if you graduate from euchre to a 13-card bridge hand.

If you were enough of a virtuoso to use mergesort or quicksort on your cards, the change from euchre to bridge would roughly double your work.

We are most interested in how quickly running-time grows with the size of the problem, since these quickly swamp constant-factor differences between algorithms that are of the same "order."

・ロト ・ 一下・ ・ ヨト ・

different, but the same?

Suppose you could count the "steps" required by an algorithm in some sort of platform-independent way. You would find that the steps required for insertion sort and selection sort on lists of size n were no more than some quadratic functions of n

To a computer scientists, even though they may vary by substantial constant factors, all quadratic functions are the "same" — they are in $\mathcal{O}(n^2)$.

$$g(n) = n^2$$
 $f(n) = 3n^2 + 50$ $h(n) = 15n^2 + n$

(日)、(四)、(日)、(日)

ъ

notes To Prove AneIN, T(n) => T(n2). assume ne IN # to inter V assume T(n), ie $\exists i \in \mathbb{N}, n = \overline{7i+1}$ Then $n^2 = (\overline{7i+1})^2 < \overline{7iek} i_0, n = \overline{7io+1}$ $= 49i^{2} + 14i + 1$ $= 7(7i^{2} + 2i) + 1$ Then let $j = \overline{7i^2} + 2i$ Then $n^2 = \overline{7j} + 1$ and $j \in \mathbb{N}$, since $j = \overline{7\cdot i\cdot i} + 2\cdot i + \overline{7}, i, 2 \in \mathbb{N}$. Then $T(n^2)$ Then $T(n^2)$ # introduced \Longrightarrow Then $T(n) \Longrightarrow T(n^2)$ # introduced \Longrightarrow Then UneiN, T(n) => T(n2) # carting buced U.

Computer Science UNIVERSITY OF TORONTO

・ロト ・四ト ・ヨト ・ヨト

Prove To 7 (Une N, T(n2) => T(n)) notes ZneN, T(n2) A 7 T(n) n=6. NEIN # GEN, c'mon! $\text{Jet } n^{\bullet} = 6.$ Then h² = 36 = 7.5+1 Then also n = 7.0 + 6, so by unequeness of remainder $\nexists i \in IN$, n = 7i + 1. Then $T(a^2)$ $\exists n \in IN, T(n^2) \land T(n),$ Then

・ロト ・ 一日 ト ・ 日 ト