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proof about limits
Ve eRT, IS e R Vy eR, |y —7| <6 = |92 — 7% <e

Assume € € RT  # to introduce V
Pick § =? # to introduce 3
Then § € R™  # figure out why later
Assume y € R # to introduce V
Assume |y — 7| < § # to introduce =

Then ly2 — 7| <e
Then |y — 7| < § = |y?> —7%| <& # introduced V
Then Vy €R, |y — 7| < § = |y® —7%| < & # introduced V
Then I8 eRT,Vy €R, |y — 7| <6 = |y> —7%| <e¢
# introduced 3
Conclude Ve € RT, IS e RT,\Vy R, |y — 7| <6 = |y® —7?| < ¢
# introduced V
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fill in the :
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proof by cases

Sometimes your argument has to split to take into account
possible properties of your generic element:

Vn € N, n? 4 n is even

A natural approach is to factor n? + n as n(n + 1), and then
consider the case where n is odd, then the case where n is even.
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get wrong right

Be careful proving a claim false. Consider the claim, for some
suitably defined X, Y and P, Q:

S : Vz € X,Vy € Y,P(z,y) = Q(z,vy)

To disprove S, should you prove:

Ve X,Vy € Y,P(z,y) = —Q(z,y)

What about

Vz e X,Vy € Y, (P(z,y) = Q(z,v))

Explain why, or why not. a
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Define T'(n) by: D: (\«’h’(“{'lo‘:»

4
Vn € N T(n)e B eN,n="Ti+1

Take some scrap paper, don’'t write your name on it, and fill in
as much of the proof of the following claim as possible:

51  Vr €N, T(n) = T(n®)

Now fill in as much of the disproof of the following claim as
possible:

<L Vn €N, T(n?) = T(n)
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allowed inference

At this point you've been introduced to some rules of inference, that allow
you to reach conclusions in certain situations. You may use these (see
pages 44-46 of the course notes) to guide your thinking, or as marginal
notes to justify certain steps:

conjunction elimination: If you know A A B, you can conclude A
separately (or B separately).

existential instantiation: If you know that 3k € X, P(k), then you can
certainly pick an element with that property, let

k'€ X,P(k). H Sommilerss meﬁ

disjunction elimination: If you know A V B, the addltlonal information - A
allows you to conclude B.

implication elimination: If you know A = B, the additional information A
allows you to conclude B. On the other hand, the
additional information —B allows you to conclude —A.

universal elimination: If you know Vz € X, P(z), the additional

information a € X allows you to conclude P(a). & compucr scienc
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Qo) = C)

are some rules that allow you to introduce new logical
structures e W
implication introduction: If you assume A and, under that
assumption, B follows, than you can conclude
A= B. cons”

more inferences

universal introduction: If you assume that a is a generic
:F\;lvc“‘) element of D and, under that assumption, derive
P(a), then you can conclude Va € D, P(a).

existential introduction: If you show z € X and you show
P(z), then you can conclude 3z € X, P(z).

conjunction introduction: If you know A and you know B, then
you can conclude A A B.

disjunction introduction: If you know A you can conclude
AV B. & SRR 5% Toronto



sorting strategies

Which algorithm do you use to sort a b-card euchre hand?
> insertion sort
> selection sort
> some other sort?

If you use one of the first two, the number of “steps” you

execute will more than quadruple if you graduate from euchre
to a 13-card bridge hand.

If you were enough of a virtuoso to use mergesort or quicksort
on your cards, the change from euchre to bridge would roughly
double your work.

We are most interested in how quickly running-time grows with

the size of the problem, since these quickly swamp

constant-factor differences between algorithms that are of the

same “order.” & SIS roron



different, but the same?

Suppose you could count the “steps” required by an algorithm
in some sort of platform-independent way. You would find that
the steps required for insertion sort and selection sort on lists of
size n were no more than some quadratic functions of n

To a computer scientists, even though they may vary by
substantial constant factors, all quadratic functions are the
“same” — they are in O(n?).

g(n) = n? f(n) =3n% + 50 h(n) =15n2 + n
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