$$
\begin{aligned}
& A_{2} \text { - due } \approx 10 \text { days prove/disprove. } \\
& \text { CSC165 winter } 2013 \\
& \text { CSC165 winter } 2013 \\
& \text { Mathematical expression } \\
& \text { Danny Heap } \\
& 9 \times 15 \\
& \text { heap@cs.toronto.edu } \\
& \text { BA4270 (behind elevators) } \\
& \text { http://www.cdf.toronto.edu/~heap/165/w13/ } \\
& \text { 416-978-5899 }
\end{aligned}
$$

Course notes, chapter 3

Outline

notes

Compures Sieme

UNIVERSITY OF TORONTO
\square

Ass ane $\varepsilon \in \mathbb{R}^{+}$\# to introduce \forall

$$
\begin{array}{r}
\rightarrow \delta=\text { what }^{\text {sail next }} \text { i } \\
\text { page. }
\end{array}
$$

Pick $\delta=$? \#to introduce \exists
Then $\delta \in \mathbb{R}^{+}$\# figure out why later
Assume $y \in \mathbb{R} \quad \#$ to introduce \forall
Assume $|y-\pi|<\delta$ \# to introduce \Rightarrow

Then $\left|y^{2}-\pi^{2}\right|<\varepsilon$
Then $|y-\pi|<\delta \Rightarrow\left|y^{2}-\pi^{2}\right|<\varepsilon \quad \#$ introduced \Rightarrow
Then $\forall y \in \mathbb{R},|y-\pi|<\delta \Rightarrow\left|y^{2}-\pi^{2}\right|<\varepsilon \quad \#$ introduced \forall
Then $\exists \delta \in \mathbb{R}^{+}, \forall y \in \mathbb{R},|y-\pi|<\delta \Rightarrow\left|y^{2}-\pi^{2}\right|<\varepsilon$ \# introduced \exists
Conclude $\forall \varepsilon \in \mathbb{R}^{+}, \exists \delta \in \mathbb{R}^{+}, \forall y \in \mathbb{R},|y-\pi|<\delta \Rightarrow\left|y^{2}-\pi^{2}\right|<\varepsilon$ \# introduced \forall
fill in the:
Then

$$
\begin{aligned}
& \left|y^{2}-\pi^{2}\right|=|y-\pi| \cdot|y+\pi| \# \text { factor. } \\
& <\delta|y+\pi| \#|y-\pi|<\delta \text {, assume } \\
& =\delta|y=\pi+\pi+\pi| \# \text { add } 0 \\
& \leq \delta| | y-\pi|+2 \pi| \# \Delta \text {-inegrades } \\
& <\delta|\delta+2 \pi| \quad \#|-1+5| \\
& \leq \delta|1+2 \pi| \quad \# \leq|1-1|+5 \mid \\
& =\delta(1+2 \pi) \# 1,2 \pi+\text {-ore } \\
& \leq \varepsilon \quad \neq \delta \leq \frac{\varepsilon}{1+2 \pi}{ }^{*} \\
& \#^{-} \delta=\min \left(1, \frac{\varepsilon}{1+2 \pi}\right) \text { works. }
\end{aligned}
$$

proof by cases

Sometimes your argument has to split to take into account possible properties of your generic element:

$$
\forall n \in \mathbb{N}, n^{2}+n \text { is even }
$$

A natural approach is to factor $n^{2}+n$ as $n(n+1)$, and then consider the case where n is odd, then the case where n is even.
scratch assume $n \in \mathbb{N} \#$ in order t introduce \forall
Then $(\exists k \in \mathbb{N}, n=2 k) \vee(\exists k \in \mathbb{N}, n=2 k+1)$
Case 1 assume $\exists k \in \mathbb{N}, n=2 k$
Then $n^{2}+n=n(n+1) \nLeftarrow$ factor.

$$
\begin{aligned}
& =n(n+1) \\
& =2 k(2 k+1) \neq \text { sub } n=2 k . \\
& =2(k(2 k+1)) \neq \text { factoring. }
\end{aligned}
$$

Then, $\exists k^{\prime} \in \mathbb{N}, n^{2}+n=2 k^{\prime}$
It $k^{\prime}=k(2 k+1) \in \mathbb{N}, \sin 2,1, k \in \mathbb{N}$ Then $n^{2}+n$ is even.
lase 2 costume $\exists k \in \mathbb{N}, n=2 k+1 k$
Then $n^{2}+n=n(n+1)$

$$
\begin{aligned}
& =n(n+1) \\
& =(2 k+1)(2 k+1+1) \quad \text { sub } \text { in }^{\prime} \\
& =(2 k+1)(2 k+2) \quad \text { \& fact ont } \\
& =2(2 k+1)(k+1) \quad 2
\end{aligned}
$$

Since $n^{2}+n$ is even in both possible case, conclude true for n.
get wrong right
Be careful proving a claim false. Consider the claim, for some suitably defined X, Y and $P, Q: \quad X=Y=\{1\}$

$$
V_{S}: \quad \frac{\forall x \in X, \forall y \in Y, P(x, y) \Rightarrow Q(x, y) Q(x, y): x>y}{\exists x \in X_{1}}
$$

To disprove S, should you prove:

$$
\forall x \in X, \forall y \in Y, P(x, y) \Rightarrow \neg Q(x, y)
$$

What about

$$
\begin{aligned}
& \text { What about } \quad P(x, y) \wedge \neg Q(x, y) \\
& X \quad \forall x \in X, \forall y \in Y, \neg(P(x, y) \Rightarrow Q(x, y))] \\
& X=Y=\mathbb{N} \quad P(x, y): X<y
\end{aligned}
$$

Explain why, or why not.

$$
Q(x, y): x \mid y
$$

Define $T(n)$ by:

$$
\forall n \in \mathbb{N} \quad T(n) \Leftrightarrow \exists i \in \mathbb{N}, n=7 i+1
$$

Take some scrap paper, don't write your name on it, and fill in as much of the proof of the following claim as possible:

$$
\forall n \in \mathbb{N}, T(n) \Rightarrow T\left(n^{2}\right)
$$

Now fill in as much of the disproof of the following claim as possible:

$$
\forall n \in \mathbb{N}, T\left(n^{2}\right) \Rightarrow T(n)
$$

UNIVERSITY OF TORONTO

