A2 - due N 10 days prove/disprove. CSC165 winter 2013 Mathematical expression 1×3, 3×5, 5×7, Danny Heap 1+2, 2+3, 3+4,4+5 heap@cs.toronto.edu 9×15 BA4270 (behind elevators) http://www.cdf.toronto.edu/~heap/165/W13/ 416-978-5899

Course notes, chapter 3

イロト イヨト イヨト イ

Outline

notes

proof bout limits

$$\forall e \in \mathbb{R}^+$$
 $|y \in \mathbb{R}| ||u - \pi| < \delta \Rightarrow |y^2 - \pi^2| < \varepsilon$
Assume $\varepsilon \in \mathbb{R}^+$ # to introduce \forall
 $\forall e \in \mathbb{R}^+$ # to introduce \forall
 $Assume |y - \pi| < \delta$ # to introduce \forall
 $Assume |y - \pi| < \delta \Rightarrow |y^2 - \pi^2| < \varepsilon$
Then $|y - \pi| < \delta \Rightarrow |y^2 - \pi^2| < \varepsilon$ # introduced \forall
 $Then \forall y \in \mathbb{R}, |y - \pi| < \delta \Rightarrow |y^2 - \pi^2| < \varepsilon$ # introduced \forall
 $Then \exists \delta \in \mathbb{R}^+$ $\forall y \in \mathbb{R}, |y - \pi| < \delta \Rightarrow |y^2 - \pi^2| < \varepsilon$
introduced \exists
 $Conclude \forall \varepsilon \in \mathbb{R}^+$ $\exists \delta \in \mathbb{R}^+, \forall y \in \mathbb{R}, |y - \pi| < \delta \Rightarrow |y^2 - \pi^2| < \varepsilon$
introduced \exists

fill in the: Then $|y^2 - \pi^2| = |y - \pi| \cdot |y + \pi| \#$ factor. < 5 | y+7 | # | y-7 | < 5, assump $= \delta |y - \pi + \pi + \pi| \# \text{ and } 0$ $\leq \delta ||y - \pi| + 2\pi | \# \triangle - \text{inequally}$ # |-1+5| $\angle S | S + 27 | \# \leq |1-1|+5 |$ 4 δ | 1 + 27 | # 8≤1 = S(1+ 27) # 1, 27 +- pre $\# S \leq \frac{\varepsilon}{1+2\pi}$ $# S = min(1) \frac{\varepsilon}{H21} works.$

Computer Science UNIVERSITY OF TORONTO

・ロト ・四ト ・ヨト ・ヨト

Sometimes your argument has to split to take into account possible properties of your generic element:

 $orall n \in \mathbb{N}, n^2+n$ is even

A natural approach is to factor $n^2 + n$ as n(n + 1), and then consider the case where n is odd, then the case where n is even.

scratch assume
$$n \in \mathbb{N}$$
 # in rider to introduce \forall
Then $(\exists k \in \mathbb{N}, n = 2k) \vee (\exists k \in \mathbb{N}, n = 2k+1)$
Case 1 assume $\exists k \in \mathbb{N}, n = 2k$
Then $n^{2}+n = n(n+1)$ # factor.
 $= 2k(2k+1) \#$ sub $n = 2k$.
 $= 2(k(2k+1)) \#$ factoring.
Then $\exists k' \in \mathbb{N}, n^{2}+n = 2k'$
 $\# k' = k(2k+1) \in \mathbb{N}, \text{ since } 2, 1, k \in \mathbb{N}$
Then $n^{2}+n$ is even.
(ase 2 assume $\exists k \in \mathbb{N}, n = 2k+1 \notin$
Then $n^{2}+n = n(n+1)$
 $= (2k+1)(2k+1+1) \#$ sub \bar{m}
 $= (2k+1)(2k+1+1) \#$ sub \bar{m}
 $= (2k+1)(2k+2)$
 $\exists imile$
Since $n^{2}+n$ is even in both possible ease,

Computer Science UNIVERSITY OF TORONTO

get wrong right

Be careful proving a claim false. Consider the claim, for some suitably defined X, Y and P, Q: $\chi = \gamma' = \xi / \xi$ $\forall x \in X, \forall y \in Y, P(x, y) \Rightarrow Q(x, y) \otimes (x, y) : \chi > y$ $\exists \chi \in \chi$

To disprove S, should you prove:

$$\bigvee \qquad orall x \in X, orall y \in Y, P(x,y) \Rightarrow
eg Q(x,y)$$

What about

$$\begin{array}{c}
 & P(x,y) \wedge^{\neg Q}(x,y) \\
 & X \in X, \forall y \in Y, \neg (P(x,y) \Rightarrow Q(x,y)) \\
 & X = Y = \mathbb{N} \quad P(x,y) \Rightarrow X \langle y \\
 & X \langle y \rangle & X \langle y \\
\end{array}$$
Explain why, or why not.

Define T(n) by:

$$\forall n \in \mathbb{N}$$
 $T(n) \Leftrightarrow \exists i \in \mathbb{N}, n = 7i + 1.$

Take some scrap paper, don't write your name on it, and fill in as much of the proof of the following claim as possible:

$$orall n \in \mathbb{N}, \, T(n) \Rightarrow \, T(n^2)$$

Now fill in as much of the **disproof** of the following claim as possible:

$$orall n \in \mathbb{N}, \, T(n^2) \Rightarrow T(n)$$

(日)、

ъ

Notes

