CSC165 winter 2013

Mathematical expression

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/165/W13/ 416-978-5899

Course notes, chapter 3

Outline

non-boolean functions

notes

\square

non-boolean functions

Take care when expressing a proof about a function that returns a non-boolean value, such as a number:

$$
\lfloor x\rfloor \text { is the largest integer } \leq x .
$$

Now prove the following statement (notice that we quantify over $x \in \mathbb{R}$, not $\lfloor x\rfloor \in \mathbb{R}$:

$$
\forall x \in \mathbb{R},\lfloor x\rfloor<x+1
$$

using more of the definition

You may have been disappointed that the last proof used only part of the definition of floor. Here's a symbolic re-writing of the definition of floor:
$\forall x \in \mathbb{R} \quad y=\lfloor x\rfloor \Leftrightarrow y \in \mathbb{Z} \wedge y \leq x \wedge(\forall z \in \mathbb{Z}, z \leq x \Rightarrow z \leq y)$
The full version of the definition should prove useful to prove:

$$
\forall x \in \mathbb{R},\lfloor x\rfloor>x-1
$$

proving something false

Define a sequence:

$$
\forall n \in \mathbb{N} \quad a_{n}=\lfloor n / 2\rfloor
$$

(of course, if you treat "/" as integer division, there's no need to take the floor. Now consider the claim:

$$
\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, j>i \Rightarrow a_{j}=a_{i}
$$

The claim is false. Disprove it.

proof by cases

Sometimes your argument has to split to take into account possible properties of your generic element:

$$
\forall n \in \mathbb{N}, n^{2}+n \text { is even }
$$

A natural approach is to factor $n^{2}+n$ as $n(n+1)$, and then consider the case where n is odd, then the case where n is even.

proof about limits

In proving this claim you can't control the value of ε or y, but you can craft δ to make things work out.

$$
\forall \varepsilon \in \mathbb{R}^{+}, \exists \delta \in \mathbb{R}^{+}, \forall y \in \mathbb{R},|y-\pi|<\delta \Rightarrow\left|y^{2}-\pi^{2}\right|<\varepsilon
$$

The claim is true. The proof format should be already familiar to you. A good approach is to fill in as much as possible, leaving the actual value of δ out until you have more intuition about it.

use uniqueness

Suppose you have a predicate of the natural numbers:

$$
\forall n \in \mathbb{N} \quad S(n) \Leftrightarrow \exists k \in \mathbb{N}, n=7 k+3
$$

Is $S(3 \times 3)$ true? How do you prove that? It's useful to check out the remainder theorem from the sheet of mathematical prerequisites.

get wrong right

Be careful proving a claim false. Consider the claim, for some suitably defined X, Y and P, Q :

$$
S: \quad \forall x \in X, \forall y \in Y, P(x, y) \Rightarrow Q(x, y)
$$

To disprove S, should you prove:

$$
\forall x \in X, \forall y \in Y, P(x, y) \Rightarrow \neg Q(x, y)
$$

What about

$$
\forall x \in X, \forall y \in Y, \neg(P(x, y) \Rightarrow Q(x, y))
$$

Explain why, or why not.

Define $T(n)$ by:

$$
\forall n \in \mathbb{N} \quad T(n) \Leftrightarrow \exists i \in \mathbb{N}, n=7 i+1
$$

Take some scrap paper, don't write your name on it, and fill in as much of the proof of the following claim as possible:

$$
\forall n \in \mathbb{N}, T(n) \Rightarrow T\left(n^{2}\right)
$$

Now fill in as much of the disproof of the following claim as possible:

$$
\forall n \in \mathbb{N}, T\left(n^{2}\right) \Rightarrow T(n)
$$

Notes

UNIVERSITY OF TORONTO
\square

