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Outline

universally quantified implication, cont’d

existence
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proof outline

More flexible format required in this course. Each link in the chain justified
by mentioning supporting evidence in a comment beside it. Here are
portions of an argument where scope of assumption is shown by identation.
A generic proof that Vz € X, P(z) = Q(z) might look like:

Assume z € X # z is generic; what I prove applies to all of X

Assume P(z). # Antecedent. Otherwise, - P(z) means we get
the implication for free.

Then Ri(z) # by previous result

C2.0,Vz € X, P(z) = Ri(z)

Then R2(z) # by previous result

C2.1,Vz € X, Ri(z) = Rz(z)

Then Q(z) # by previous result
C2.n,Vz € X, Ra(z) = Q(z)

Then P(z) = Q(z) # I assumed antecedent, got consequent
(aka introduced =)

Then Vz € X, P(z) = Q(z) # reasoning works for all z € )%L“s
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a real inequality

Prove that for every pair of non-negative real numbers (z, y), if
z is greather than y, then the geometric mean, ,/zy is less than
the arithmetic mean, (z + y)/2.
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some directions work better

P= @

Prove that for any natural number n, n? odd implies that n is
odd.
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proving existence

To prove the a set is non-empty, it’s enough to exhibit one
element. How do you prove:
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prove a claim about a sequence

\]/

Define sequence a, by:

Vn € N

Now prove:
FeNVIEN, g <1=7<1
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contradiction — a special case of contrapositive

rl/\ F2 /\ /\ Eq‘—f?'z:? S
NS =Y V-V T
Define the prime natural numbers as
P = {p € N| p has exactly two distinct divisors in N}. How do
you prove:
S:  VneN|P|>n

It would be nice to have some result R that leads to S. If you
could show R = S, and that R is true, then you’d be done.
But, out of many elementary results, how do you choose an R?
Contradiction will often lead you there.
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non-boolean functions

Take care when expressing a proof about a function that
returns a non-boolean value, such as a number:

|z] is the largest integer < z.

Now prove the following statement (notice that we quantify
over z € R, not |z] € R:

Ve eR,|z| <z +1
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using more of the definition

You may have been disappointed that the last proof used only
part of the definition of floor. Here's a symbolic re-writing of
the definition of floor:

Ve € R y=lz]eoyeZry<zA(Nz€Z,z<z=2<y)
The full version of the definition should prove useful to prove:

Ve eR,[z| >z —1
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proving something false

Define a sequence:
vVn €N an, = |n/2]

(of course, if you treat “/” as integer division, there’s no need
to take the floor. Now consider the claim:

EIiEN,VjGN,j>i:>aj:ai

The claim is false. Disprove it.
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proof by cases

Sometimes your argument has to split to take into account
possible properties of your generic element:

Vn € N, n? 4 n is even

A natural approach is to factor n? + n as n(n + 1), and then
consider the case where n is odd, then the case where n is even.
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