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universally quantified implication, cont’d
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proof outline (K X >Y = @ )/ 2 > Vg

More flexible forma\;[ requl(Zd in this course Each link in the chain justified
by mentioning supporting evidence in a comment beside it. Here are
portions of an argument where scope of assumption is shown by identation.
A generic proof that Vz € X, P(z) = Q(z) might look like:

Assume z € X # z is generic; what I prove applies to all of X

Assume P(z). # Antecedent. Otherwise, - P(z) means we get
the implication for free.

Then Ri(z) # by previous result

C2.0,Vz € X, P(z) = Ri(z)

Then R2(z) # by previous result

C2.1,Vz € X, Ri(z) = Rz(z)

"I‘hen Q(z) # by previous result /M) M\_ ,

C2.n,Vz € X, R,(z) = Q(z)

Then P(z) = Q(z) # I assumed antecedent, got consequent
(aka introduced =)

Then Vz € X, P(z) = Q(z) # reasoning works for all z € )%ump.”sc. nc
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a real inequality

Yoy e! 0\ 0y = €Ph

Prove that for every pair of non-negative real numbers (z, y), if
z is greather than y, then the geometric mean, ,/zy is less than
the arithmetic mean, (z + y)/2.
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some directions work better W‘j ?”‘?’“;:u = 12 4l

V N vxlOJ‘( = VM“

Prove that for any natural number n, n? odd implies that n is
odd.
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proving existence

To prove the a set is non-empty, it’s enough to exhibit one
element. How do you prove:

3z € R, 23+ 322 — 4z =12
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prove a claim about a sequence

Define sequence a, by:

Vn €N an = n?

Now prove:

JEN,VEN,a <i=j <3
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contradiction — a special case of contrapositive

Define the prime natural numbers as
P = {p € N| p has exactly two distinct divisors in N}. How do
you prove:

S:  VneN|P|>n

It would be nice to have some result R that leads to S. If you
could show R = S, and that R is true, then you’d be done.
But, out of many elementary results, how do you choose an R?
Contradiction will often lead you there.
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