CSC165 winter 2013
Mathematical expression
aid sheet $8.5^{\prime \prime} \times 11^{\prime \prime}$, hand written, both sides,
Danny Heap all 4 edges, heap@cs.toronto.edu
BA4270 (behind elevators)

- quantifiers
- negations

416-978-5899

- English \leftrightarrow symbolic

NB Pleas enow list comphensions

$$
[x * x \text { for } x \text { in } L]
$$

Outline

universally quantified implication, cont'd
existence
notes $\equiv \quad \equiv \quad \supset 9 \propto$

proof outline
 $$
x>y \Rightarrow(x+y) / 2>\sqrt{x y}
$$

More flexible format requited in this course. Each link in the chain justified by mentioning supporting evidence in a comment beside it. Here are portions of an argument where scope of assumption is shown by dentation. A generic proof that $\forall x \in X, P(x) \Rightarrow Q(x)$ might look like:

Assume $x \in X \# x$ is generic; what I prove applies to all of X
Assume $P(x)$. \# Antecedent. Otherwise, $\neg P(x)$ means we get the implication for free.

Then $R_{1}(x)$ \# by previous result $C 2.0, \forall x \in X, P(x) \Rightarrow R_{1}(x)$
Then $R_{2}(x)$ \# by previous result $C 2.1, \forall x \in X, R_{1}(x) \Rightarrow R_{2}(x)$

Then $Q(x)$ \# by previous result $C 2 . n, \forall x \in X, R_{n}(x) \Rightarrow Q(x)$
Then $P(x) \Rightarrow Q(x) \#$ I assumed antecedent, got consequent (aka introduced \Rightarrow)

Then $\forall x \in X, P(x) \Rightarrow Q(x)$ \# reasoning works for all $x \in X_{\text {信 }}^{b}$

a real inequality

$$
\forall x, y \in \mathbb{R}^{\geqslant 0}, x>y \Rightarrow(x+y) / 2
$$

Prove that for every pair of non-negative real numbers (x, y), if x is greather than y, then the geometric mean, $\sqrt{x y}$ is less than the arithmetic mean, $(x+y) / 2$.
some directions work better ahead proved
n odd $\Rightarrow n^{2}$ odd

Prove that for any natural number n, n^{2} odd implies that n is odd.

proving existence

To prove the a set is non-empty, it's enough to exhibit one element. How do you prove:

$$
\exists x \in \mathbb{R}, x^{3}+3 x^{2}-4 x=12
$$

prove a claim about a sequence

Define sequence a_{n} by:

$$
\forall n \in \mathbb{N} \quad a_{n}=n^{2}
$$

Now prove:

$$
\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_{j} \leq i \Rightarrow j<i
$$

contradiction - a special case of contrapositive

Define the prime natural numbers as
$P=\{p \in \mathbb{N} \mid p$ has exactly two distinct divisors in $\mathbb{N}\}$. How do you prove:

$$
S: \quad \forall n \in \mathbb{N},|P|>n
$$

It would be nice to have some result R that leads to S. If you could show $R \Rightarrow S$, and that R is true, then you'd be done. But, out of many elementary results, how do you choose an R ? Contradiction will often lead you there.

Notes

$$
\forall x, y \in \mathbb{R}^{\geqslant 0}, x>y \Rightarrow(x+y) / 2>\sqrt{x y}
$$

assume x, y ore generic, non-negature real numbers. assume $x>y$

Then $x_{2}-y_{2}>0$ \# subtract y both sides
Then $x^{2}+y^{2}-2 x y>0$ \# mull by + -re
Then $x^{2}+y^{2}+2 x y>4 x y \#$ ald $4 x y$ to both.
$x+y>2 \sqrt{x y} \# \sqrt{ }$ is monotonic.
$\frac{x+y}{2}>\sqrt{x y} \geqslant$ deride by 2 .
$\frac{x+4}{2}>\sqrt{x y} \#$ by previous line
Then $x>y \Rightarrow \frac{x+4}{2}>\sqrt{1 y} \#$ iptroducal \Rightarrow
Then, for all pairs of non. negatwie tea numbers x, y, $x>y \xrightarrow{t} \rightarrow x+y>\sqrt{x y} \#$ introduced \forall 富c

Notes

$$
\forall n \in \mathbb{N}, n^{2} \text { odd } \Rightarrow n \text { odd }
$$

Consume n is a generic element of \mathbb{N} assume n^{2} odd \nexists antecedent

Then $\exists k \in \mathbb{N}, n^{2}=\sqrt{2 k+1}$ 边 definition n^{2} odd $k=2\left(k^{\prime}\right)^{2}+k$ hard to to Square rod．
－ok by．$\quad n^{2}-1=2 k$
So $(n-1)(n+1)=2 k$（even）．
$\frac{\text { need heavy machinery if prime（2）}}{\text { divides } m n \text { then }}$
Then $\exists k^{\prime} \in \mathbb{N}, n=2 k^{\prime}+1$ ，ie n odd． 21 n
Then n^{2} odd $\Rightarrow n$ odd \＃introduce l \Rightarrow
Conclude that whenever $n \in \mathbb{N}, n^{2}$ odd \Rightarrow nod．
到roduel \forall

Notes
assume $n \in \mathbb{N}$ penni.
\# recall assume n not odd (ie even) $\# p \Rightarrow Q$

Then $\frac{\text { not odd }}{\exists k \in \mathbb{N}, n=2 k} \neq$ negation
Then $n^{2}=4 k^{2}$ * squaring definition
$=2\left(2 k^{2}\right) \quad$ sganingita.
Then $\exists k^{\prime} \in \mathbb{N}, n^{2}=2 k^{\prime} \not k^{\prime}=2 k^{2} \in \mathbb{N}$
$\# \sin n a, k \in \mathbb{N}$

* N coed under *

Then n^{2} is even
Then n^{2} is not odd \# negation of Then n^{2} odd $\Rightarrow n$ odd (in Iroduced) $\underset{\text { contropositione) }}{\Rightarrow}$ Conclude, $\forall n \in \mathbb{N}, n^{2}$ odd $\Rightarrow \operatorname{nodd}$

