CSC165 winter 2013

Mathematical expression

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/165/W13/ 416-978-5899

Course notes, chapter 2-3

Outline

implication as disjunction

mixed quantifiers

Notes • 三 ミ

implication two ways

The result of the following truth table is useful enough to bear restating:

$$
\begin{array}{cc||c|c}
P & Q & P \Rightarrow Q & \neg P Q Q \\
\hline \hline \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
\mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} \\
\mathrm{~F} & \mathrm{~T} & \mathrm{~T} & T \\
\mathrm{~F} & \mathrm{~F} & \mathrm{~T} & T
\end{array}
$$

bi-implication

Translate bi-implication into the conjunction of two disjunctions:

$$
Q) \wedge(\neg Q P)
$$

Now change your expression for bi-implication into the disjunction of two conjunctions (use the some of the equivalences from a few slides ago)
$\equiv((\neg P \vee Q) \wedge \neg Q) \vee((\neg P \vee Q) \wedge P) \equiv \neg P \wedge^{\neg} Q \vee Q \wedge^{\wedge} Q \vee \neg P \wedge P \cdot$
$V Q \wedge P$

$$
\equiv \neg P \wedge Q Q \vee Q \wedge P
$$

What's the negation of bi-implication? How would you explain it in English?

$$
\begin{aligned}
& \text { English? } \\
& P \wedge \wedge C \\
& Q \wedge P P-\text { exclusul } \\
& O R!
\end{aligned}
$$

transitivity

What does the following statement mean, when you interpret it as a venn diagram?

$$
\forall x \in X,(P(x) \Rightarrow Q(x)) \wedge(Q(x) \Rightarrow R(x))
$$

For another insight, negate the following statement, and simplify it by transforming implications into disjunctions:

$$
\begin{aligned}
& \quad \neg[((P \Rightarrow Q) \wedge(Q \Rightarrow R)) \Rightarrow(P \Rightarrow R)] \\
& ((P \Rightarrow Q) \wedge(Q \Rightarrow R)) \wedge P \wedge R \\
& \equiv[(F P \vee Q) \wedge(\neg Q \vee R)] \wedge P \wedge R
\end{aligned}
$$

for all, one. . . one for all

What's the difference between these two claims:


```
def forallExists(P, L1, L2).
    return False not in [True in [P(x,y) for y in L2] for x in L1]
def existsForall(P, L1, L2) :
    return True in [False not in [P(x,y) for x in L2] for y in L1]
```

Can you switch $\forall \varepsilon \in \mathbb{R}^{+}$with $\exists \delta \in \mathbb{R}^{+}$without altering the truthfulness of the statement below?
$\longrightarrow \forall x \in \mathbb{R}, \forall \varepsilon \in \mathbb{R}^{+}, \exists \delta \in \mathbb{R}^{+},|x-0.6|<\delta \Rightarrow\left|x^{2}-0.36\right|<\varepsilon$ $\forall x \in \mathbb{R}, \exists \delta \ldots, \forall \varepsilon-,|x-0.6|<\left.\delta \Rightarrow 1 \quad\right|_{1}<\varepsilon$
(you can!). How about: $\delta=|x-a 6| / 2$) $\begin{gathered}\text { choopl. } \\ \text { voluous trath!' }\end{gathered}$

$$
\forall \varepsilon \in \mathbb{R}^{+}, \exists \delta \in \mathbb{R}^{+}, \forall x \in \mathbb{R},|x-0.6|<\delta \Rightarrow\left|x^{2}-0.36\right|<\varepsilon
$$

This latter is often written in a different form:

$$
\lim _{x \rightarrow 0.6} x^{2}=0.36
$$

First specify how close to $0.36 x^{2}$ has to be (ε), then I can choose how close to $0.6 x$ must be (δ). If I choose δ first, can it work for all ε ?

graphically...

are we close to infinity yet?

What is meant by phrases such as "as x approaches (gets close to) infinity, x^{2} increases without bound (sometimes 'becomes infinite')"?
Or even

$$
\lim _{x \rightarrow \infty} x^{2}=\infty
$$

Look at the graph of x^{2}. Do either x or x^{2} ever reach infinity?

How about:

$$
\forall \varepsilon \in \mathbb{R}^{+}, \exists \delta \in \mathbb{R}^{+}, \forall x \in \mathbb{R}, x>\delta \Rightarrow x^{2}>\varepsilon
$$

Getting "close" to infinity means getting far from (and greater than) zero. Once you have a specification for how far from zero x^{2} must be (ε), you can come up with how far from zero x must be (δ). Can you choose a δ in advance that works for all ε ?

graph "approaching infinity"

asymptotic

double quantifiers

There are (at least) three ways to claim that a certain subset of the cartesian product $\mathbb{N} \times \mathbb{N}$, aka \mathbb{N}^{2} is non-empty:

$$
\begin{aligned}
& \exists m \in \mathbb{N}, \exists n \in \mathbb{N}, m^{2}=n \\
& \exists(m, n) \in \mathbb{N}^{2}, m^{2}=n \\
& \exists n \in \mathbb{N}, \exists m \in \mathbb{N}, m^{2}=n
\end{aligned}
$$

Whether we think of this as a statement about a subset of the cartesian product being empty, or a relation between non-empty subsets of \mathbb{N}, it is symmetrical.
There are (at least) three ways to claim that the entire cartesian product $\mathbb{N} \times \mathbb{N}$ has some property:

$$
\begin{aligned}
& \forall m \in \mathbb{N}, \forall n \in \mathbb{N}, m n \in \mathbb{N} \\
& \forall(m, n) \in \mathbb{N}^{2}, m n \in \mathbb{N} \\
& \forall n \in \mathbb{N}, \forall m \in \mathbb{N}, m n \in \mathbb{N}
\end{aligned}
$$

Again, the order in which we consider elements of an ordered pair doesn't change the logic.

Notes

$$
\begin{aligned}
& \neg[\\
& ((P \Rightarrow Q) \wedge(Q \Rightarrow R)) \wedge P \wedge^{\urcorner} R \\
& \begin{aligned}
& \equiv[(\neg P \vee Q) \wedge(\neg Q \vee R)] \wedge \\
&\left.\equiv\left[(P \vee Q Q) \wedge^{\urcorner} Q\right) \vee(\neg P \vee Q) \wedge R\right] \wedge P \wedge \neg R
\end{aligned} \\
& \left.\left.=[\neg P \wedge\urcorner Q \vee \frac{Q \wedge^{\urcorner} Q}{F} \vee\right\urcorner P \wedge R \vee Q \wedge R\right] \wedge\left(P \wedge^{\urcorner} R\right)
\end{aligned}
$$

$$
\begin{aligned}
& \equiv F
\end{aligned}
$$

done

$$
\begin{aligned}
& \text { Notes Freebi }
\end{aligned}
$$

$$
\begin{aligned}
& \text { you may identitios... } \\
& \rightarrow \neg P \vee(\urcorner Q \vee R) \nRightarrow \Rightarrow \text { denticty } \\
& \equiv\left(7 P \vee^{7} Q\right) \vee R \# \text { associativi } \\
& \equiv(\neg Q \vee \neg P) \vee R \text { \# commutale e } \\
& \equiv \neg Q \vee(\neg P \vee R) \quad \# \text { associalut } \\
& \equiv Q \Rightarrow(P \Rightarrow R) \nRightarrow \Rightarrow / v \text { dextity }
\end{aligned}
$$

