SLOGS - 132 possibly submitted... others needed

- Tutorial RSN.
tomorrow CSC165 winter 2013
- office Hour:

Mathematical expression
We tuesday 2-4

- Help centre

Danny Heap
Mon- Thais
heap@cs.toronto.edu
4-6
BA 4270 (behind elevators)

- TA offúc Course web page 416-978-5899
sours, next
week
TBA. Course notes, chapter 2

Outline

leftovers. . .

Notes

UNIVERSITY OF TORONTO
\square
"natural" language
unless \equiv Uff-not

Translate "unless" as "if not":
Don't knock it unless you've tried it.
Don't knock if not you've tried it.
If not you tied it, chen don't knock it.
$\neg T \Rightarrow \neg K \equiv K \Rightarrow T$
idiom

$$
\begin{array}{l|l}
P=\text { persons } & \text { example } \\
P=\text { vegetarians } & \text { that distingusls } \\
Q-\text { salad eaters. } & \text { (1) from (2) }
\end{array}
$$

Some expressions for restricting domains are more common than others.

$$
\forall x \in D, x \in P \cap Q
$$

"Every D that is a P is also a $Q . "$ Usually

$\forall x \in D, P(x) \Rightarrow Q(x)$. Less common $\forall x \in D \cap P, Q(x)$.
What about $\forall x \in D, P(x) \wedge Q(x)$ (\wedge means "and")?
"and"

$$
D=\mathbb{N}
$$

"Some D that is /a P is also a Q." Usually

$$
\begin{aligned}
& D=\mathbb{N} \\
& P=\text { solutions } \\
& x_{0} \\
& x^{2}=
\end{aligned}
$$

(1) $\exists x \in D, P(x) \wedge Q(x)$. Less common $\exists x \in D \nmid P \cap Q$. What about $\exists x \in D, P(x) \Rightarrow Q(x)$?

$$
Q=\{x \mid x<x+5\}
$$

$$
7 \in D, \text { 呾 } 7^{2}=5 \text { then } 7 \leq 12 \text {. }
$$

conjunction: \wedge

Combine two statements by claiming they are both true with logical "and":
$A(x)$ and $B(x) \quad$ (python keyword and works like this)
$A(x) \wedge B(x) \quad(\wedge$ is a symbol for "and")
As sets: $x \in A \cap B$
Notice that a conjunction is false if either part is false. "The employee makes less than 100,000 and more than 60,000, " is true for Gwen, but false for Ellen. X

$$
G \in L \cap M
$$

Employee	Gender	Salary
Betty	female	500
Carlos	male	40,000
Doug	male	30,000
Ellen	female	50,000
Flo	female	20,000
Gwen	female	95,000

watch out for English "and"

Sometimes the English word "and" is used to smear some meaning over several components:

There is a pen and a telephone.
In the universe of objects, O, with predicates $P(x)(x$ is a pen $)$ and $T(x)$ (x is a telephone), you could try to translate this as
$\exists x \in O, P(x) \wedge T(x)$. What's a better translation into symbols?
Occasionally English usage of and will differ from logical usage even in mathematical material:

$$
\begin{aligned}
& \text { The solutions are } x<10 \text { and } x>20 \\
& \text { The solutions are } x<20 \text { and } x>10
\end{aligned}
$$

The first statements probably meant the union of the two sets, or the logical or. The second meant the intersection, so the logical and is appropriate.

disjunction: \vee

Combine two statements by claiming that at least one of them is true using or (V in symbols).
$A(x)$ or $B(x) \quad$ (the python keyword or works like this)
$\begin{array}{ll}A(x) & B(x) \\ x \in A \cup B \quad \text { (in symbols) }\end{array}$
Notice the close connection between the symbols for conjunction and intersection, \wedge, \cap, and the symbols for disjunction and union, \vee, \cup. Coincidence? In any case, you may use it as a mnemonic.
"The employee is female or earns more than 35,000."

Employee	Gender	Salary
Betty	female	500
Carlos	male	40,000
Doug	male	30,000
Ellen	female	50,000
	Flo	female

silly English tricks

In logic we use or generously, or inclusively, to mean something like "and/or". Sometimes we convey the inclusive or by saying something like "A or B , or both." Be aware that natural English sometimes uses or to mean "A or B, but not both" something we'd call exclusive or in logic:

Either we play the game my way, or I'm taking my ball and going home.

negation: \neg

Negate the statement "All employees earning over 110,000 are female." Ustaally prepending the word "Not" will work, and in logic we use the corresponding symbol \neg :

$$
\neg(\forall e \in E, O(e) \Rightarrow F(e))
$$

A good exercise is to "work" the negation \neg as far into the statement as possible. The statement is true exactly when its negation is false.

The original statement is universally quantified, so it says something about an absence of counterexamples. The negation of the original statement should claim something about the presence of counterexamples.

special negation idiom

Negating implications is a common task. There are several equivalent ways of doing this, but some are more common than others. Try negating the following in such a way that the \neg symbol applies to the "smallest possible" part of the expression:

$$
\forall x \in X, P(x) \Rightarrow Q(x)
$$

Now for symmetry, negate the following in such a way that the \neg symbol applies to the "smallest possible" part of the expression:

$$
\exists x \in X, P(x) \wedge \neg Q(x)
$$

standard negation

Negated expressions have some standard transformations:

- $\neg \forall x \in X, \ldots \Leftrightarrow \exists x \in X, \neg \ldots$
- $\neg \exists x \in X, \ldots \Leftrightarrow \forall x \in X, \neg \ldots$
- $\neg(P(x) \Rightarrow Q(x)) \Leftrightarrow P(x) \wedge \neg Q(x)$
- $\neg(P(x) \wedge Q(x)) \Leftrightarrow P(x) \Rightarrow \neg Q(x) \quad$ (has this become asymmetrical?)

Push the \neg symbol "as far in" to the following expression as possible:

$$
\neg(\forall x \in X, \exists y \in Y, P(x) \Rightarrow Q(x))
$$

Notes

UNIVERSITY OF TORONTO
\square

