
CSC165 winter 2013
Mathematical expression

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/165/W13/

416-978-5899

Course notes, chapter 5

http://www.cdf.toronto.edu/~heap/165/W13/
http://www.cdf.toronto.edu/~heap/165/W13/Notes/notes.pdf

Outline

problems without algorithms?

contradictory program

notes

an algorithm for everything?

Many of us become interested in computers because we want to solve

problems in a systematic, repeatable way. We write programs that

implement our systematic solutions, and at the heart of these are

algorithms : sequences of executable steps.

You already have lots of experience devising algorithms in Python.

However, Alonzo Church (lambda calculus) and Alan Turing (Turing

machines) showed, before they even had computers we would recognize

today, that some problems can't be solved by algorithms.

By anybody. On anything we would conceive of as a computer.

caveats

Turing and Church took pains to show that uncomputable problems existed

for any reasonable computational model | anything like a computer

running a program. We'll be a bit more modest and show that problems

exist for which you cannot write an algorithm to solve them in Python.

It turns out that Python isn't the bottleneck. Modern programming

languages running on modern computers are Turing Complete | they can

solve (and fail to solve) the same class of problems as the abstract Turing

machine considered by Alan Turing.

solve this

Consider the following short function. You should be able to devise an

algorithm that predicts whether it will halt, without actually running it

def may_halt(s) :

if len(s) % 2 == 0 :

while True : pass

else :

print s + " has odd length."

By the way, why would it not be practical to check whether the function

halts by just running it? Also, notice that just two behaviours are possible:

either halt (gracefully, or with some exception), or don't halt.

nobody knows the answer (so far)

For over 70 years mathematicians have been stumped in trying to show

that the following code halts for every natural number n :

def collatz(n) :

while n > 1 :

if n % 2 == 0:

n = n / 2

else:

n = 3*n + 1

return "Reached 1..."

The mathematicians have checked (empirically) that the code halts on

every n up to more than 258, but they can't show that it won't loop forever

on some big n after that. There are only a few lines of code, and many

thousands of eyes have stared at this problem for many years, yet they

can't predict whether it will halt on every input.

the equalizer

No one in this room (or any other room of programmers) can correctly

implement the function H(f,i) below:

def H(f, i):

’’’Return True if f(i) will halt, False otherwise.’’’

Once you’ve figured out how to implement this, delete next line

return True

H is passed a reference to function f and input i, so it can examine all the

code in f, and all the data in i. In spite of this, there are cases of functions

f with input i where the prediction is impossible (at least by an algorithm).

The fact that H(f,i) is not computable is a consequence of the fact that

navel_gaze(f) is not computable for some f. We use the contrapositive: if

H(f,i) is computable, then so is navel_gaze(f)

def navel_gaze(f) :

while H(f, f) :

pass

return 42

But now we have the problem:

what does navel_gaze(navel_gaze) do?

It halts if, and only if, it doesn't halt! (a contradiction).

terminology

If f is a well-de�ned function, that is we can say what f (x) is

for every x in some domain, but we can't say how to compute

f (x), then we say f is noncomputable. Otherwise, we say f is

computable

We've just seen our �rst non-computable function: halt. There

are many more.

reductions

Suppose I know some function f is non-computable, but that

some other well-de�ned function g could be extended to build

f . In the language of implication:

g computable) f computable

We say f reduces to g , and using the contrapositive:

f non-computable) g non-computable

another uncomputable function

def halt(f,i):

def initialized(g,v):

""" g initializes v on every possible input """

...code for initialized goes here...

Put some code here to scan the code for f and figure out

a variable name that doesn’t appear, and store it in v

def f_prime(x):

Ignore the argument x, call f with the fixed argument i

(the one passed in to halt).

f(i)

exec("print " + v) #

return not initialized(f_prime,v)

partly-working halt. . .

Here's a quick-and-dirty \implementation" of halt:

def halt_0(f, i) :

""" Does f halt on input i? """

return (hash(f) + hash(i)) % 2 == 0

. . . and navel_gaze for reference:

def navel_gaze(g) :

""" break any halting program! """

while halt_0(g, g) :

pass

return 42

If you examine halt carefully, you'll conclude that the problem with

navel_gaze will occur with almost any function that returns boolean values

for all pairs of functions and inputs. . .

No matter how cleverly you program, you can never properly

match up every pair (function, input) with an appropriate

True/False value.

This non-correspondence boils down to counting in�nite

sets. . . and coming up with di�erent sizes!

1 6=1 What?!?

how we count �nite sets. . .

When I count some �nite set out loud, I put the elements into

1{1 correspondence with the set of names of some numbers, for

example fone, two, threeg.

I have to be careful that my counting is 1{1 (otherwise I

overcount)

I have to be careful that my counting is onto (otherwise I

undercount)

Does 1 always equal 1?

No. Sets A and B have in�nitely many members if they each

have more members than any �nite number. Having more than

any number isn't the same as saying they have the same size as

each other!

Two sets (�nite or in�nite) have the same size (cardinality, to

impress friends and family) if we can match them up (count) in

a way that is 1{1 and onto.

what are 1{1 and onto anyway?

f : A 7! B is 1{1: 8x ; y 2 A; f (x) = f (y)) x = y .

f : A 7! B is onto: 8y 2 B ; 9x 2 A; f (x) = y

Is f : fnatural numbersg 7! feven natural numbersg
f (n) = 2n 1{1 and onto?

I Prove that 8m ;n 2 N; 2m = 2n) m = n

I Prove that for every even natural number m there is a

natural number n such that m = 2n .

Whoa! | this means the set of natural numbers has the same

size as its subset, the even natural numbers. True fact.

When jAj � jNj we say A is countable

The rational numbers, Q are countable. Lots of sets are

countable. An informal test: could you come up with a

procedure to \list" the elements of a set, each list element

appearing beside a natural number?

Surprisingly, not all sets are countable. Cantor showed this

using diagonalization

Notes

	problems without algorithms?
	contradictory program
	notes

