CSC165 winter 2013

Mathematical expression

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)

http://www.cdf.toronto.edu/~heap/165/W13/ 416-978-5899

Course notes, chapter 4

Outline

Bounded below

some theorems

notes

4 三 \quad 三

non-polynomials

Big-oh statements about polynomials are pretty easy to prove: $f \in \mathcal{O}(g)$ exactly when the highest-degree term of g is no smaller than the highest-degree term of f.

What about functions such as $\log (n)$ or 3^{n} ? Logarithmic functions are in big-Oh of any polynomial, whereas exponential functions (with a base bigger than 1) are not in big-Oh of any polynomial. How do you prove such things?

Prove $2^{n} \notin \mathcal{O}\left(n^{2}\right)$

Use $\lim _{n \rightarrow \infty} 2^{n} / n^{2}$

Do you know anything about the ratio $2^{n} / n^{2}$, as n gets very large? How do you evaluate:

$$
\lim _{n \rightarrow \infty} \frac{2^{n}}{n^{2}}
$$

If the limit evaluates to ∞, then that's the same as saying:

$$
\forall c \in \mathbb{R}^{+}, \exists n^{\prime} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n^{\prime} \Rightarrow \frac{2^{n}}{n^{2}}>c
$$

Once your enemy hands you a c, you can choose an n^{\prime} with the required property.

Using l'Hôpital's rule and limits

big-Omega

Notice that the definition of big-Omega differs in just one character from big-Oh:

$$
\Omega(g)=\left\{f: \mathbb{N} \mapsto \mathbb{R}^{\geq 0} \mid \exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow f(n) \geq c g(n)\right\}
$$

The rôle of B is, as with big-Oh, to act as a breakpoint, so comparisons don't have to start at the origin.

The rôle of c is to scale g down below f.

If you're proving $f \in \Omega(g)$, you get to choose c and B to suit your proof.
Notice that it would be really unfair to allow c to be zero.

one more bound

It often happens that functions are bounded above and below by the same function. In other words, $f \in \mathcal{O}(G) \wedge f \in \Omega(g)$. We combine these two concepts into $f \in \Theta(g)$.

$$
\begin{gathered}
\Theta(g)=\left\{f: \mathbb{N} \mapsto \mathbb{R}^{\geq 0} \mid \exists c_{1} \in \mathbb{R}^{+}, \exists c_{2} \in \mathbb{R}^{+}, \exists B \in \mathbb{N},\right. \\
\left.\forall n \in \mathbb{N}, n \geq B \Rightarrow c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}
\end{gathered}
$$

You might want to draw pictures, and conjecture about appropriate values of c_{1}, c_{2}, B for $f=5 n^{2}+15$ and $g=n^{2}$.

How to prove general statement about two functions:
$\mathcal{F}=\left\{f: \mathbb{N} \mapsto \mathbb{R}^{\geq 0}\right\}$
$\forall f, g, h \in \mathcal{F},(f \in \mathcal{O}(g) \wedge g \in \mathcal{O}(h)) \Rightarrow f \in \mathcal{O}(h)$

how about:

$\mathcal{F}=\left\{f: \mathbb{N} \mapsto \mathbb{R}^{\geq 0}\right\}$
$\forall f, g \in \mathcal{F}, f \in \mathcal{O}(g) \Rightarrow g \in \Omega(f)$

UNIVERSITY OF TORONTO
prove or disprove:
$\mathcal{F}=\left\{f: \mathbb{N} \mapsto \mathbb{R}^{\geq}{ }^{0}\right\}$
$\forall f, g \in \mathcal{F}, f \in \mathcal{O}(g) \Rightarrow f \cdot f \in \mathcal{O}(g \cdot g)$
university of toronto
prove or disprove:
$\mathcal{F}=\left\{f: \mathbb{N} \mapsto \mathbb{R}^{\geq 0}\right\}$
$\forall f, g \in \mathcal{F},(f \in \mathcal{O}(h) \wedge g \in \mathcal{O}(h)) \Rightarrow(f+g) \in \mathcal{O}(h)$

UNIVERSITY OF TORONTO
prove or disprove:
$\mathcal{F}=\left\{f: \mathbb{N} \mapsto \mathbb{R} \geq^{\bullet}\right\}$
$\forall f, g \in \mathcal{F}, f \in \mathcal{O}(g) \Rightarrow f \in \mathcal{O}(g \cdot g)$
university of toronto

Notes

UNIVERSITY OF TORONTO
\square

