
CSC165 winter 2013

Mathematical expression

Danny Heap

heap@cs.toronto.edu

BA4270 (behind elevators)

Course web page 416-978-5899

Using Course notes, chapter 1



Outline

Introduction

Notes



what's CSC165?
a course about expression (communication):

I with and through programs

I with developers

I knowing what you mean

I understanding what others mean

I analyzing arguments, programs



why CSC165?

do you:

I memorize math?

I have trouble explaining what you're doing in technical work?

I have trouble understanding word problems?

don't you:

I enjoy reading math books for new material

I like talking about abstract x and y as much as particular

examples of what x and y represent?



CS needs math:

I graphics

I cryptography

I arti�cial intelligence

I numerical analysis

I networking

I databases



doing well in CSC165

Doing well has two aspects: being recognized as doing well by

being awarded credit (grades), and being able to retain

concepts and tools for use later on. Here's how to do both:

I Read the course web page, and emails, regularly.

Understand the course information sheet.

I Spend enough time. We assume an average of 8

hours/week | three in lecture, two in tutorial, three

reviewing or working on assignments.

I Ask questions. Make your own annotations.



ambiguity

When you use a natural language (English, Chinese) you can

make it as precise or ambiguous as you need. For some

purposes (jokes, gossip) rich ambiguity is essential. For other

purposes (getting instructions on heart surgery) precision is

essential. We're all equipped to work in both modes. Work out

the double meanings of these headlines:

I Prostitutes appeal to Pope

I Death may cause loneliness, feelings of isolation

I Two sisters reunite after 18 years at checkout counter

I Iraqi head seeks arms

I Police begin campaign to run down jaywalkers



precision

We achieve precision by restricting our language. For certain

jobs, in certain communities, we use some words or symbols

with restricted meanings. Becoming part of the \club" involves

learning the de�nitions of these meanings | my kids don't

mean the same thing as I do when they say something is \sick"

or when they say \snap." Some words and symbols used in

special ways by mathematicians:

I continuous

I �eld

I group

I for all (each) 8

I there is (exists) 9



balance

I computers are precise | they execute identical

instructions identically

I humans are as precise as necessary, and di�erent human

audiences require di�erent levels of precision

I The really di�cult job is �nding the right level of

precision. Too much precision introduces unbearable

tedium; too little introduces unfathomable ambiguity.

I Proofs are primarily works of literature: they communicate

with humans, and the best proofs have suspense, pathos,

humour and surprise. As a side-e�ect, proofs present a

convincing argument for some fact.



comment these!

Functions q1 through q4 each say something di�erent about the

relationship between lists L1 and L2. You may think of these

lists as sets (although there's an important di�erence between

lists and sets)

def q1(L1, L2) :

’’’Return whether ...

’’’

for x in L1 :

if x in L2 : return False

return True



more comments

def q2(L1, L2) :

’’’Return whether ...

’’’

for x in L1 :

if not x in L2 : return False

return True

def q3(L1, L2) :

’’’Return whether ...

’’’

for x in L1 :

if not x in L2 : return True

return False



yet more comments

def q4(L1, L2) :

’’’Return whether ...

’’’

for x in L1 :

if x in L2 : return True

return False



verify

Check your comments for q1{q4 in various ways (checking isn't
proving, but it increases our con�dence or reveals 
aws):

I Try out particular values for L1 and L2; see whether the results

are consistent with your comments. Check \corner" values, e.g.

when one or both lists are empty. Try reversing rôles of L1, L2.

I draw a venn diagram: interlocking circles representing L1 and

L2, enclosed in a rectangle representing the \universe" from

which list elements may be drawn. Try to make some of the

functions q1{q4 false by having elements in some regions. Try to

make some of the functions true in a similar way.

I Find lists that create patterns such as

[q1(L1,L2),q2(L1,L2),q3(L1,L2),q4(L1,L2)] =

[True,True,False,False]. Are some patterns impossible?



variation?

Functions quant1{quant4 (below) do the same things as q1{q4,

but the numbering doesn't correspond. Use the same approach

| examples, venn diagrams, etc., to verify them.

These functions use python list comprehension (don't worry if

you haven't seen it before). Here's an example that shows how

comprehensions work:

>>> [x * 2 for x in [1, 2, 3]]

[2, 4, 6]



some quants. . .

def quant1(L1, L2) :

’’’Return whether ...

’’’

return False in [x in L2 for x in L1]

def quant2(L1, L2) :

’’’Return whether ...

’’’

return True in [x in L2 for x in L1]



more quants. . .

def quant3(L1, L2) :

’’’Return whether ...

’’’

return False not in [x in L2 for x in L1]

def quant4(L1, L2) :

’’’Return whether ...

’’’

return True not in [x in L2 for x in L1]



rigor without mortis

You need both rigor and intuition to solve problems you
haven't seen a template for. In this course I'll present
open-ended problems, and recommend the following steps for
getting started on them:

Understand the problem: Know what's given, what's required.

Re-state the problem in your own words, perhaps draw

some diagrams.

Plan solution(s): If you've seen something similar, you may be able

to use its result or its method. Work backwards:

assume you've solved the problem and think about the

next-to-last step. Try solving simpler, smaller versions

of the problem. Have more than one plan before you

attack the problem (!).



. . .mortis, continued

Carry out your plan: Does it lead somewhere? If not, repeat earlier

steps. Articulate exactly why and how you're stuck (if

you are).

Review: Look back to savour breakthroughs and think about

roadblocks. Verify your solution as much as possible.

Convince a skeptical peer that you have a solution.

Extend your solution to new problems. . .



Notes


