CSC165, Winter 2013
 Assignment 3

sample solution

1. Prove or disprove: $5 n^{3}-3 n^{2}+2 n+3$ is in $\mathcal{O}\left(2 n^{3}-n^{2}+n+1\right)$.

Sample solution: The claim is true. It is fairly easy to see that both polynomials have non-negative values when n is a natural number, since the n^{3} term dominates the negative n^{2} term. What remains to be proved is:

$$
\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 5 n^{3}-3 n^{2}+2 n+3 \leq c\left(2 n^{3}-n^{2}+n+1\right)
$$

My strategy in the body of the proof is to over- or under-estimate each polynomial until I am comparing two monomials (one-term polynomials) for simplicity.
Pick $c=10$. Then $c \in \mathbb{R}^{+}$. \# to introduce \exists
Pick $B=1$. Then $B \in \mathbb{N}$. \# to introduce \exists
Assume $n \in \mathbb{N}$ and $n \geq B$. \# in order to introduce \forall and \Rightarrow.
Then

$$
\begin{aligned}
5 n^{3}-3 n^{2}+2 n+3 \leq & 5 n^{3}+2 n+3 \quad \# \text { add } 5 n^{3}+2 n+3 \text { to both sides of }-3 n^{2} \leq 0 \\
\leq & 5 n^{3}+2 n^{3}+3 n^{3} \\
& \# \text { multiply } 2 n \times n^{2} \text { and } 3 \times n^{3}, n^{2}, n^{3} \geq 1 \text { since } n \geq B=1 \\
= & 10 n^{3} \\
= & c n^{3} \quad \# c=10 \\
\leq & c\left(n^{3}+n^{3}-n^{2}\right) \quad \# n^{3}-n^{2} \geq 0, n \geq 1 \\
= & c\left(2 n^{3}-n^{2}\right) \\
\leq & c\left(2 n^{3}-n^{2}+n+1\right) \quad \# \text { add } 2 n^{3}-n^{2} \text { to both sides of } 0 \leq n+1
\end{aligned}
$$

Then $5 n^{3}-3 n^{2}+2 n+3 \leq c\left(2 n^{3}-n^{2}+n+1\right)$. \# by transitivity
Then $\forall n \in \mathbb{N}, n \geq B \Rightarrow 5 n^{3}-3 n^{2}+2 n+3 \leq c\left(2 n^{3}-n^{2}+n+1\right)$. \# introduced \forall, \Rightarrow.
Then $\exists c \in \mathbb{R}^{+}, B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 5 n^{3}-3 n^{2}+2 n+3 \leq c\left(2 n^{3}-n^{2}+n+1\right)$.
\# introduced \exists twice
Conclude $5 n^{3}-3 n^{2}+2 n+3 \in \mathcal{O}\left(2 n^{3}-n^{2}+n+1\right)$. \# satisfies definition
2. Prove or disprove: $5 n^{3}-3 n^{2}+2 n+3$ is in $\Omega\left(2 n^{3}-n^{2}+n+1\right)$.

Sample solution The claim is true. Again, both polynomials have non-negative values when n is a natural number, so I need to prove:

$$
\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 5 n^{3}-3 n^{2}+2 n+3 \geq c\left(2 n^{3}-n^{2}+n+1\right)
$$

Again, I try to reduce the number of terms I have to compare.
Pick $c=1$. Then $c \in \mathbb{R}^{+}$. \# in order to introduce \exists
Pick $B=3$. Then $B \in \mathbb{N}$. \# in order to introduce \exists.
Assume $n \in \mathbb{N}$ and $n \geq B$. \# in order to introduce \forall and \Rightarrow.
Then

$$
\begin{aligned}
5 n^{3}-3 n^{2}+2 n+3 \geq & \geq n^{3}-3 n^{2} \quad \# \text { add } 5 n^{3}-3 n^{2} \text { to both sides of } 2 n+3 \geq 0 \\
\geq & 4 n^{3}+n^{3}-3 n^{2} \quad \# \text { algebra } \\
\geq & 4 n^{3} \quad \# \text { add } 4 n^{3} \text { to both sides of } n^{3}-3 n^{2} \geq 0, \text { since } n \geq B \geq 3 \\
& =4 c n^{3}=c\left(2 n^{3}+n^{3}+n^{3}\right) \quad \# \text { since } c=1 \\
\geq & c\left(2 n^{3}+n+1\right) \quad \# \text { since } n^{3} \geq n, n^{3} \geq 1 \text { when } n \geq B \geq 1 \\
\geq & c\left(2 n^{3}-n^{2}+n+1\right) \quad \\
& \# \text { add } 2 n^{3}+n+1 \text { to both sides of } 0 \geq-n^{2}, \text { since } n \geq 0
\end{aligned}
$$

Then $5 n^{3}-3 n^{2}+2 n+3 \geq c\left(2 n^{3}-n^{2}+n+1\right)$. \# by transitivity Then $\forall n \in \mathbb{N}, n \geq B \Rightarrow 5 n^{3}-3 n^{2}+2 n+3 \geq c\left(2 n^{3}-n^{2}+n+1\right)$. \# introduced \forall and \Rightarrow. Then $\exists c \in \mathbb{R}^{+}, B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 5 n^{3}-3 n^{2}+2 n+3 \geq c\left(2 n^{3}-n^{2}+n+1\right)$. \# introduced \exists twice.
Conclude $5 n^{3}-3 n^{2}+2 n+3$ is in $\Omega\left(2 n^{3}-n^{2}+n+1\right)$. \# satisfies the definition
3. Prove or disprove: $15 \ln n$ is in $\Omega(n / 3)$. Hint: Consider using limit techniques from calculus, including l'Hôpital's rule as part of this proof. Please talk to your TA/instructor/Help Centre when needed.

Sample solution: The claim is false. There is no issue about both functions having non-negative values on \mathbb{N} (except $\ln 0$ is undefined), so I must prove the negation of the contition of $\Omega(n / 3)$:
$\neg\left(\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 15 \ln n \geq c(n / 3)\right) \Leftrightarrow \forall c \in \mathbb{R}^{+}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq B \wedge 15 \ln n<c(n / 3)$
I'll use the limit techniques from calculus.
Assume $c \in \mathbb{R}^{+}$and assume $B \in \mathbb{N}$.
Then

$$
\lim _{n \rightarrow \infty} \frac{15 \ln n}{n / 3}=\lim _{n \rightarrow \infty} \frac{45}{n}=0 \quad \text { \# L'Hôpital's rule and } \lim _{n \rightarrow \infty} 1 / n=0
$$

Then $\forall c^{\prime} \in \mathbb{R}^{+}, \exists n^{\prime} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n^{\prime} \Rightarrow|15 \ln n /(n / 3)|<c^{\prime} \quad$ \# Definition of limit Then $\exists n^{\prime \prime} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n^{\prime \prime} \Rightarrow|15 \ln n /(n / 3)|<c$. \# since $c \in \mathbb{R}^{+}$, by previous line. Pick $n=\max \left(n^{\prime \prime}, B, 1\right)$. Then $n \in \mathbb{N}$ and $n \geq B$. \# by choice of n.
Then $15 \ln n /(n / 3) \leq|15 \ln n /(n / 3)|<c$. \# by choice of n
Then $15 \ln n<c(n / 3)$. \# multiply both sides by $n / 3>0$, since $n \geq 1$.
Then $\exists n \in \mathbb{N}, n \geq B \wedge 15 \ln n>c(n / 3)$. \# introduced \exists
Then $\forall c \in \mathbb{R}^{+}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq B \wedge 15 \ln n<c(n / 3)$. \# introduced \forall twice.
Conclude $15 \ln n$ is not in $\Omega(n / 3)$. \# violates the definition
4. Prove or disprove: 3^{n} is in $\mathcal{O}\left(2^{n}\right)$. Hint: Consider using the limit techniques of calculus and notice that

$$
\lim _{n \rightarrow \infty} \frac{3^{n}}{2^{n}}=\lim _{n \rightarrow \infty}\left(\frac{3}{2}\right)^{n}
$$

Sample solution: The claim is false. Both 3^{n} and 2^{n} are positive for natural numbers n, so the issue hinges on proving the negation of $3^{n} \in \mathcal{O}\left(2^{n}\right)$:

$$
\begin{aligned}
& \neg\left(\exists c \in \mathbb{R}^{+}, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow 3^{n} \leq c 2^{n}\right) \\
\Leftrightarrow & \forall c \in \mathbb{R}^{+}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq B \wedge 3^{n}>c 2^{n}
\end{aligned}
$$

Assume $c \in \mathbb{R}^{+}$and $B \in \mathbb{N}$. \# in order to introduce \forall
Then $\lim _{n \rightarrow \infty} 3^{n} / 2^{n}=\lim _{n \rightarrow \infty}(3 / 2)^{n}=\infty$. $\# \lim _{n \rightarrow \infty} x^{n}=\infty$ if $x>1$.
Then $\forall \varepsilon \in \mathbb{R}^{+}, \exists n_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_{\varepsilon} \Rightarrow 3^{n} / 2^{n}>\varepsilon$. \# by definition of $\lim _{n \rightarrow \infty} 3^{n} / 2^{n}=\infty$.
Then $\exists n_{c} \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_{c} \Rightarrow 3^{n} / 2^{n}>c$. \# By previous line, since $c \in \mathbb{R}^{+}$.
Pick $n=B+n_{c}$. Then $n \in \mathbb{N}$ and $n \geq B$. \# by choice of n.
Then $3^{n} / 2^{n}>c$. \# by choice of n.
Then $3^{n}>c 2^{n}$. \# multiply both sides by positive 2^{n}.
Then $\exists n \in \mathbb{N}, n \geq B \wedge 3^{n}>c 2^{n}$. \# introduced \exists.
Conclude $\forall c \in \mathbb{R}^{+}, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq B \wedge 3^{n}>c 2^{n}$. \# introduced \forall twice.
Then $3^{n} \notin \mathcal{O}\left(2^{n}\right)$. \# violates definition
5. Prove that the function true_that below is not computable:

```
def true_that(f, I, n) :
    """
    Return true when the if statement on line n of function f
    executes on input I, and false otherwise.
    | | |
```

Emulate the technique from the course notes to reduce halt to true_that
Sample solution: I use a proof by contradiction. The key idea is to use the putative true_that to check whether a function reaches a particular line when the way is blocked by a call to $g(i)$ - the function that may-or-may-not halt. I use parameter name g in my definition of halt to avoid confusion with the parameter in true_that
Assume, for the sake of contradiction, that true_that is computable.
Then, assuming the body of the definition of true_that is filled in, the following python code is executable:

```
def true_that(f, I, n) :
    """ Return True iff the statement on line n of function f
            executes on input I.
    """
    # implementation omitted...
def halt(g,i) :
    def P(x) : # ignore parameter x
        g(i) # execution passes this line iff g halts
        if True : return "whoohoo!"
    return true_that(P, 7, 2)
```

Then the if statement on line 2 of function P executes iff $g(i)$ halts.
Then true_that (P, 7, 2) returns True if $g(i)$ halts, False otherwise.
Then halt (g, i) returns True if $\mathrm{g}(\mathrm{i})$ halts, False otherwise. This is the specification of halt (g, i) which we proved in class to be non-computable.
Contradiction!
The assumption that true_that is computable lead to a contradiction. Therefore the assumption is false, and true_that is non-computable.
I assume that the call to $g(i)$ is wrapped in an appropriate try/catch clause, so that execution passes to the following line unless g (i) has an infinite loop. I don't actually show the try/catch clause because it clutters things up.

