CSC165, Winter 2013
Assignment 3

sample solution

1. Prove or disprove: 5n° — 3n? + 2n + 3 is in O(2n® —n? + n + 1).

Sample solution: The claim is true. It is fairly easy to see that both polynomials have non-negative
values when n is a natural number, since the n® term dominates the negative n? term. What
remains to be proved is:

JeeRT,AIBEN,VneN,n>B=5n-3n?+2n+3<c(2n® —n? +n+1)

My strategy in the body of the proof is to over- or under-estimate each polynomial until I am
comparing two monomials (one-term polynomials) for simplicity.

Pick ¢ = 10. Then c € R". # to introduce 3
Pick B = 1. Then B € N. # to introduce 3
Assume n € N and n > B. # in order to introduce V and =.

Then
5n° —3n? +2n+3 < 5n®+4+2n+4+3  # add 5n% 4 2n + 3 to both sides of —3n% <0
< 5n®+42n° +3n®
# multiply 2n x n? and 3 x n®,n? n3 > 1sincen > B = 1.
= 10n®
= cn® #c=10
< ¢(n® 4 n—n?) #n3—n?2>0,n>1
= ¢(2n® —n?)
< c2n®—n?+n+1) # add 2n® — n? to both sides of 0 < n + 1

Then 5n3 — 3n? + 2n + 3 < ¢(2n® — n? + n + 1). # by transitivity
Then Vn € N,n > B = 5n® — 3n? +2n + 3 < ¢(2n® — n? + n + 1). # introduced V, =.
Then 3c€ RT,BeN,Vn € Nyn > B=5n% —3n? + 2n +3 < c(2n® —n? + n + 1).
# introduced 3 twice
Conclude 5n® — 3n? + 2n + 3 € O(2n® — n? + n + 1). # satisfies definition

2. Prove or disprove: 5n® — 3n? +2n + 3 is in Q(2n® —n? + n + 1).



Sample solution The claim is true. Again, both polynomials have non-negative values when n is a
natural number, so I need to prove:

JeeRT,AIBEN,VneN,n>B=5n®-3n? +2n+3>c(2n® —n? +n+1)

Again, I try to reduce the number of terms I have to compare.
Pick ¢ = 1. Then c € R". # in order to introduce 3

Pick B = 3. Then B € N. # in order to introduce 3.

Assume n € N and n > B. # in order to introduce V and =.

Then
5n° —3n?2+2n+3 > 5nd— 3n? # add 5n° — 3n? to both sides of 2n +3 >0
> 4nd 4+ nd —3n? # algebra
> 4nd # add 4n® to both sides of n® —3n2? >0, since n > B > 3
= 4cn® = c(2n® + n® +nf) # sincec=1
> c(2n®+n+1) # since n® >n,n®>1whenn>B>1
> c(2n®—n?+n+1)

# add 2n® + n + 1 to both sides of 0 > —n?, since n > 0

Then 5n3 — 3n2 +2n + 3 > ¢(2n® — n? + n + 1). # by transitivity
Then Vn € N,n > B = 5n® — 3n? +2n + 3 > ¢(2n® — n? + n + 1). # introduced V and =
Then 3ce RT,BeN,Vvne N,n > B=5n®—-3n?2 +2n+3 >c(2n® —n? + n+1).
# introduced 3 twice.

Conclude 5n® — 3n? + 2n + 3 is in Q(2n3 — n% + n + 1). # satisfies the definition

3. Prove or disprove: 15Inm is in Q(n/3). Hint: Consider using limit techniques from calculus, including
I’Hopital’s rule as part of this proof. Please talk to your TA /instructor/Help Centre when needed.

Sample solution: The claim is false. There is no issue about both functions having non-negative values
on N (except In0 is undefined), so I must prove the negation of the contition of Q(n/3):

- (Jce RT,3IBEN,Vn € N,n > B = 15lnn > ¢(n/3)) & Ve € RT,VB € N,3n € N,n > BAl5lnn < ¢(n/3)

I'll use the limit techniques from calculus.
Assume c € Rt and assume B € N.

Then

= lim — =0 # L’Hopital’s rule and lim 1/n =0.

n—oo 'n,/3 n—oo N n—o0

Then V¢’ € RY,3n' e N,Vn € Nyn > n/ = [15lnn/(n/3)| < ¢ # Definition of limit
Then In” € N,Vn € N,n > n" = |15Inn/(n/3)| < c. # since c € R, by previous line.
Pick n = max(n”, B,1). Then n € N and n > B. # by choice of n.

Then 15Inn/(n/3) < |15lnn/(n/3)| < c. # by choice of n

Then 151lnn < ¢(n/3). # multiply both sides by n/3 > 0, since n > 1.

Then 3n € N,n > BA 15lnn > ¢(n/3). # introduced 3

Then Ve € RT,VB € N,In € N,n > BA 15lnn < ¢(n/3). # introduced V twice.
Conclude 151nn is not in Q(n/3). # violates the definition



4. Prove or disprove: 3™ is in O(2"). Hint: Consider using the limit techniques of calculus and notice that

3n 3\"
lim — = lim ()
n—oo 2™ n—oo \ 2

Sample solution: The claim is false. Both 3™ and 2™ are positive for natural numbers n, so the issue
hinges on proving the negation of 3" € O(2"):

=(3c € RT,IB € N,Vn € N,n > B = 3" < c2")
& VYceRT,VBeN,IneN,n > BA3" > 2"

Assume c € R* and B € N. # in order to introduce V

Then lim, o 37/2" = lim,,50(3/2)" = 0.

# lim, ,oz" =0 ifz > 1.

Then Ve € R*,3n. € N,Vn € N,n > n, = 3"/2" > e.

# by definition of lim,,_,o 3"/2" = .

Then In, € N,Vn € N,n > n, = 3™/2" > c. # By previous line, since c € R™.
Pick n = B+ n.. Then n € N and n > B. # by choice of n.

Then 3™/2™ > c. # by choice of n.

Then 3™ > ¢2™. # multiply both sides by positive 27.

Then dn € N,n > B A 3™ > ¢2™. # introduced 4.

Conclude Vc € R",VB € N,3n € N,n > B A 3" > c2". # introduced V twice.
Then 3™ ¢ O(2™). # violates definition



5. Prove that the function true_that below is not computable:

def true_that(f, I, n)
nan
Return true when the if statement on line n of function f
executes on input I, and false otherwise.

nun

Emulate the technique from the course notes to reduce halt to true_that

Sample solution: I use a proof by contradiction. The key idea is to use the putative true_that to check
whether a function reaches a particular line when the way is blocked by a call to g(i) — the
function that may-or-may-not halt. I use parameter name g in my definition of halt to avoid
confusion with the parameter in true_that

Assume, for the sake of contradiction, that true_that is computable.

Then, assuming the body of the definition of true_that is filled in, the following python
code is executable:
def true_that(f, I, n)
""" Return True iff the statement on line n of function f
executes on input I.

# implementation omitted...

def halt(g,i)
def P(x) : # ignore parameter x
g(i) # execution passes this line iff g halts
if True : return "whoohoo!"

return true_that(P, 7, 2)
Then the if statement on line 2 of function P executes iff g(i) halts.
Then true_that(P, 7, 2) returns True if g(i) halts, False otherwise.
Then halt(g,i) returns True if g(i) halts, False otherwise. This is the specification of
halt(g,i) which we proved in class to be non-computable.
Contradiction!

The assumption that true_that is computable lead to a contradiction. Therefore the assumption
is false, and true_that is non-computable.

I assume that the call to g(i) is wrapped in an appropriate try/catch clause, so that execution
passes to the following line unless g(i) has an infinite loop. [ don’t actually show the try/catch
clause because it clutters things up.



