
CSC165, Winter 2013

Assignment 3

sample solution

1. Prove or disprove: 5n3 � 3n2 + 2n+ 3 is in O(2n3 � n2 + n+ 1).

Sample solution: The claim is true. It is fairly easy to see that both polynomials have non-negative

values when n is a natural number, since the n3 term dominates the negative n2 term. What

remains to be proved is:

9c 2 R+; 9B 2 N; 8n 2 N; n � B ) 5n3 � 3n2 + 2n+ 3 � c(2n3 � n2 + n+ 1)

My strategy in the body of the proof is to over- or under-estimate each polynomial until I am

comparing two monomials (one-term polynomials) for simplicity.

Pick c = 10. Then c 2 R+. # to introduce 9

Pick B = 1. Then B 2 N. # to introduce 9

Assume n 2 N and n � B. # in order to introduce 8 and ).

Then

5n3 � 3n2 + 2n+ 3 � 5n3 + 2n+ 3 # add 5n3 + 2n+ 3 to both sides of � 3n2 � 0

� 5n3 + 2n3 + 3n3

# multiply 2n� n2 and 3� n3; n2; n3 � 1 since n � B = 1:

= 10n3

= cn3 # c = 10

� c(n3 + n3 � n2) #n3 � n2 � 0; n � 1

= c(2n3 � n2)

� c(2n3 � n2 + n+ 1) # add 2n3 � n2 to both sides of 0 � n+ 1

Then 5n3 � 3n2 + 2n+ 3 � c(2n3 � n2 + n+ 1). # by transitivity

Then 8n 2 N; n � B ) 5n3 � 3n2 + 2n+ 3 � c(2n3 � n2 + n+ 1). # introduced 8, ).

Then 9c 2 R+; B 2 N; 8n 2 N; n � B ) 5n3 � 3n2 + 2n+ 3 � c(2n3 � n2 + n+ 1).

# introduced 9 twice

Conclude 5n3 � 3n2 + 2n+ 3 2 O(2n3 � n2 + n+ 1). # satis�es de�nition

2. Prove or disprove: 5n3 � 3n2 + 2n+ 3 is in 
(2n3 � n2 + n+ 1).
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Sample solution The claim is true. Again, both polynomials have non-negative values when n is a

natural number, so I need to prove:

9c 2 R+;9B 2 N; 8n 2 N; n � B ) 5n3 � 3n2 + 2n+ 3 � c(2n3 � n2 + n+ 1)

Again, I try to reduce the number of terms I have to compare.

Pick c = 1. Then c 2 R+. # in order to introduce 9

Pick B = 3. Then B 2 N. # in order to introduce 9.

Assume n 2 N and n � B. # in order to introduce 8 and ).

Then

5n3 � 3n2 + 2n+ 3 � 5n3 � 3n2 # add 5n3 � 3n2 to both sides of 2n+ 3 � 0

� 4n3 + n3 � 3n2 # algebra

� 4n3 # add 4n3 to both sides of n3 � 3n2 � 0; since n � B � 3

= 4cn3 = c(2n3 + n3 + n3) # since c = 1

� c(2n3 + n+ 1) # since n3 � n; n3 � 1 when n � B � 1

� c(2n3 � n2 + n+ 1)

# add 2n3 + n+ 1 to both sides of 0 � �n2; since n � 0

Then 5n3 � 3n2 + 2n+ 3 � c(2n3 � n2 + n+ 1). # by transitivity

Then 8n 2 N; n � B ) 5n3 � 3n2 + 2n+ 3 � c(2n3 � n2 + n+ 1). # introduced 8 and ).

Then 9c 2 R+; B 2 N; 8n 2 N; n � B ) 5n3 � 3n2 + 2n+ 3 � c(2n3 � n2 + n+ 1).

# introduced 9 twice.

Conclude 5n3 � 3n2 + 2n+ 3 is in 
(2n3 � n2 + n+ 1). # satis�es the de�nition

3. Prove or disprove: 15 lnn is in 
(n=3). Hint: Consider using limit techniques from calculus, including

l'Hôpital's rule as part of this proof. Please talk to your TA/instructor/Help Centre when needed.

Sample solution: The claim is false. There is no issue about both functions having non-negative values

on N (except ln 0 is unde�ned), so I must prove the negation of the contition of 
(n=3):

:
�
9c 2 R+; 9B 2 N; 8n 2 N; n � B ) 15 lnn � c(n=3)

�
, 8c 2 R+;8B 2 N; 9n 2 N; n � B^15 lnn < c(n=3)

I'll use the limit techniques from calculus.

Assume c 2 R+ and assume B 2 N.

Then

lim
n!1

15 lnn

n=3
= lim

n!1

45

n
= 0 # L'Hôpital's rule and lim

n!1

1=n = 0:

Then 8c0 2 R+; 9n0 2 N; 8n 2 N; n � n0 ) j15 lnn=(n=3)j < c0 # De�nition of limit

Then 9n00 2 N; 8n 2 N; n � n00 ) j15 lnn=(n=3)j < c. # since c 2 R+, by previous line.

Pick n = max(n00; B; 1). Then n 2 N and n � B. # by choice of n.

Then 15 lnn=(n=3) � j15 lnn=(n=3)j < c. # by choice of n

Then 15 lnn < c(n=3). # multiply both sides by n=3 > 0, since n � 1.

Then 9n 2 N; n � B ^ 15 lnn > c(n=3). # introduced 9

Then 8c 2 R+; 8B 2 N; 9n 2 N; n � B ^ 15 lnn < c(n=3). # introduced 8 twice.

Conclude 15 lnn is not in 
(n=3). # violates the de�nition
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4. Prove or disprove: 3n is in O(2n). Hint: Consider using the limit techniques of calculus and notice that

lim
n!1

3n

2n
= lim

n!1

�
3

2

�
n

Sample solution: The claim is false. Both 3n and 2n are positive for natural numbers n, so the issue

hinges on proving the negation of 3n 2 O(2n):

:(9c 2 R+; 9B 2 N; 8n 2 N; n � B ) 3n � c2n)

, 8c 2 R+; 8B 2 N; 9n 2 N; n � B ^ 3n > c2n

Assume c 2 R+ and B 2 N. # in order to introduce 8

Then limn!1 3n=2n = limn!1(3=2)n =1.

# limn!1 xn =1 if x > 1.

Then 8" 2 R+; 9n" 2 N; 8n 2 N; n � n" ) 3n=2n > ".

# by de�nition of limn!1 3n=2n =1.

Then 9nc 2 N; 8n 2 N; n � nc ) 3n=2n > c. # By previous line, since c 2 R+.

Pick n = B + nc. Then n 2 N and n � B. # by choice of n.

Then 3n=2n > c. # by choice of n.

Then 3n > c2n. # multiply both sides by positive 2n.

Then 9n 2 N; n � B ^ 3n > c2n. # introduced 9.

Conclude 8c 2 R+; 8B 2 N; 9n 2 N; n � B ^ 3n > c2n. # introduced 8 twice.

Then 3n 62 O(2n). # violates de�nition
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5. Prove that the function true_that below is not computable:

def true_that(f, I, n) :

"""

Return true when the if statement on line n of function f

executes on input I, and false otherwise.

"""

Emulate the technique from the course notes to reduce halt to true_that

Sample solution: I use a proof by contradiction. The key idea is to use the putative true_that to check

whether a function reaches a particular line when the way is blocked by a call to g(i) | the

function that may-or-may-not halt. I use parameter name g in my de�nition of halt to avoid

confusion with the parameter in true_that

Assume, for the sake of contradiction, that true_that is computable.

Then, assuming the body of the de�nition of true_that is �lled in, the following python

code is executable:

def true_that(f, I, n) :

""" Return True iff the statement on line n of function f

executes on input I.

"""

# implementation omitted...

def halt(g,i) :

def P(x) : # ignore parameter x

g(i) # execution passes this line iff g halts

if True : return "whoohoo!"

return true_that(P, 7, 2)

Then the if statement on line 2 of function P executes i� g(i) halts.

Then true_that(P, 7, 2) returns True if g(i) halts, False otherwise.

Then halt(g,i) returns True if g(i) halts, False otherwise. This is the speci�cation of

halt(g,i) which we proved in class to be non-computable.

Contradiction!

The assumption that true_that is computable lead to a contradiction. Therefore the assumption

is false, and true_that is non-computable.

I assume that the call to g(i) is wrapped in an appropriate try/catch clause, so that execution

passes to the following line unless g(i) has an in�nite loop. I don't actually show the try/catch

clause because it clutters things up.
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