CSC165, Winter 2013 Assignment 2

sample solutions

1. Prove or disprove: $\forall x, y \in \mathbb{R}, x<y \Rightarrow(\exists z \in \mathbb{R}, x<z \wedge z<y)$.

Sample solution: The statement is true. It says that if you have one real number less than another, then there is another real number strictly between them. The way to prove this is to construct z in terms of x and y. One way to do this is to make z the midpoint.
Assume x, y are real numbers. \# in order to introduce \forall
Assume $x<y . \#$ in order to introduce \Rightarrow
Pick $z=(x+y) /$ 2.0. Then $z \in \mathbb{R}$. \# \mathbb{R} closed under,$+ / 2.0$
Then $z<y$. \# Since $x<y \Rightarrow x+y<y+y \Rightarrow(x+y) / 2.0<(y+y) / 2.0$.
Also $x<z$. \# Since $x<y \Rightarrow x+x<x+y \Rightarrow(x+x) / 2.0<(x+y) / x .0$
So $x<z \wedge z<y$. \# introduced conjunction.
So $\exists z \in \mathbb{R}, x<z \wedge z<y$. \# introduced \exists
Then $x<y \Rightarrow(\exists z \in \mathbb{R}, x<z \wedge z<y)$. \# introduced \Rightarrow
Then $\forall x, y \in \mathbb{R}, x<y \Rightarrow(\exists z \in \mathbb{R}, x<z \wedge z<y)$. \# introduced \forall
2. Prove or disprove: $\forall m, n \in \mathbb{N}, m<n \Rightarrow(\exists k \in \mathbb{N}, m<k \wedge k<n)$

Sample solution: The claim is false. To disprove it, just find a pair of consecutive natural numbers, and observe that there is no natural number between them (since they increment by 1). I prove the negation of the original statement.

$$
\exists m, n \in \mathbb{N}, m<n \wedge(\forall k \in \mathbb{N}, m \geq k \vee k \geq n)
$$

Pick $m=1, n=2$. Then $m, n \in \mathbb{N}$. \# 1, 2 are natural numbers
Then $m<n$. \# $1<2$.
Assume $k \in \mathbb{N}$. \# in order to introduce \forall
Assume $k>m=1$. \# in order to introduce \Rightarrow
Then $k \geq 2$. \# Successor to 1 is $1+1=2$ in \mathbb{N}
Then $k>m \Rightarrow k \geq 2=n$. \# introduced \forall
Then $k \leq m \vee k \geq n$. \# equivalent to $k>m \Rightarrow k \geq n$.
Then $\forall k \in \mathbb{N}, k \leq m \vee k \geq n$. \# introduced \forall
Then $m<n \wedge(\forall k \in \mathbb{N}, m \geq k \vee k \geq n)$. \# introduced conjunction
Then $\exists m, n \in \mathbb{N}, m<n \wedge(\forall k \in \mathbb{N}, m \geq k \vee k \geq n)$. \# introduced \exists
3. Prove or disprove: If n is a natural number that has $n^{2} \bmod 11=3$, then $n \bmod 11=5$. Your proof/disproof must use the definition of $a \bmod b$ on page 11 of the Course Notes.

Sample solution: The claim is false. To negate it, just produce some perfect square that is equal to 3 $\bmod 11$, but whose square root is not equal to $5 \bmod 11$.

$$
\exists n \in \mathbb{N}, n^{2} \bmod 11=3 \wedge n \bmod 11 \neq 5
$$

Pick $n=6$. Then $n \in \mathbb{N}$. \# 6 is a natural number.
Then $n \bmod 11=6 \neq 5 . \# 6=0 \times 11+6 \wedge 11>6 \geq 0$.
\# uniqueness of quotient remainder means $6 \bmod 11=6$ and not 5
Then $n^{2}=36 \bmod 11=3$. $\# 36=3 \times 11+3 \wedge 11>3 \geq 0$.
Then $n^{2} \bmod 11=3 \wedge n \bmod 11 \neq 5$. \# conjunction
Then $\exists n \in \mathbb{N}, n^{2} \bmod 11=3 \wedge n \bmod 11 \neq 5 \#$ introduced \exists.
4. Prove or disprove: If n is a natural number that has $n \bmod 11=5$, then $n^{2} \bmod 11=3$. Your proof/disproof must use the definition of $a \bmod b$ on page 11 of the Course Notes.

Sample solution: The claim is true. The main idea is to use the definition to write a natural number that is equal to 5 mod 11 as some product of 11 plus 5 , then square this and do some algebra.
Assume n is a natural number. \# in order to introduce \forall
Assume $n \bmod 11=5$. \# in order to introduce \Rightarrow
Then $\exists q \in \mathbb{N}, n=11 q+5$. \# definition of $n \bmod 11=5$.
Then $n^{2}=(11 q+5)^{2}$. \# substitute $n=11 q+5$.
Then $n^{2}=121 q^{2}+110 q+25$. \# expanding
Then $n^{2}=11\left(11 q^{2}+10 q+2\right)+3$. \# factoring
Then $\exists k \in \mathbb{N}, n^{2}=11 k+3 \wedge 11>3 \geq 0$.
\# Pick $k=11 q^{2}+10 q+2$, since $11, q, 10,2 \in \mathbb{N}$ and \mathbb{N} closed under $\times,+$.
Then $n^{2} \bmod 11=3$. \# by definition
Then $n \bmod 11=5 \Rightarrow n^{2} \bmod 11=3$. \# introduced \Rightarrow.
Then $\forall n \in \mathbb{N}, n \bmod 11=5 \Rightarrow n^{2} \bmod 11=3$. \# introduced \forall
5. Prove or disprove: For all quadruples of positive real numbers w, x, y, z, If $w / x<y / z$ then:

$$
\left(\frac{w}{x}<\frac{w+y}{x+z}\right) \wedge\left(\frac{w+y}{x+z}<\frac{y}{z}\right)
$$

Hint: The material on inequalities on page 12 of the Course Notes may be helpful.
Sample solution: The claim is true. The idea is to transform the inequality in the antecedent, $w / x<$ y / z, into the inequalities in the consequent by multiplying both sides by positive numbers (this preserves the inequality). To keep the argument clear, be sure to work in a single direction: from the antecedent to the consequent.
Assume w, x, y, z are positive real numbers. \# in order to introduce \forall
Assume $w / x<y / z . \#$ in order to introduce \Rightarrow
Then $w z<y x$.
\# multiply both sides of $w / x<y / z$ by $z x \in \mathbb{R}^{+}$, since $z, x \in \mathbb{R}^{+}$
Then $w z+y z<y x+y z$. \# add $y z$ to both sides

Then $(w+y) /(x+z)<y / z$. \# first part of conjunction \# multiply both sides by $1 /(z(x+z)) \in \mathbb{R}^{+}$, since $z,(x+z) \in \mathbb{R}^{+}$. Now, add $w x$ to both sides of $w z<y x$ (already established above), yielding $w x+w z<w x+y x$.
Then $w / x<(w+y) /(x+z)$. \# multiply both sides by $1 / x(x+z)$
Then $w / x<(w+y) /(x+z) \wedge(w+y) /(x+z)<y / z$. \# introduced conjunction
Then $w / x<y / z \Rightarrow w / x<(w+y) /(x+z) \wedge(w+y) /(x+z)<y / z$. \# introduced \Rightarrow Then $\forall w, x, y, z \in \mathbb{R}^{+}, w / x<y / z \Rightarrow w / x<(w+y) /(x+z) \wedge(w+y) /(x+z)<y / z$. $\#$ introduced \forall
6. Prove or disprove: For every pair of positive natural numbers (m, n), if $m \geq n$, then the $\operatorname{gcd}(m, n)=$ $\operatorname{gcd}(n, m-n)$. Your proof/disproof must use the definition of the gcd (Greatest Common Divisor) on page 12 of the Course Notes.

Sample solution: The claim is true. The idea is to use the properties of the gcd from the definition that it divides both numbers, and is the largest integer that does so. By showing that $\operatorname{gcd}(m, n)$ is a common factor of $(n, m-n)$, and that $\operatorname{gcd}(n, m-n)$ is a common factor of (m, n), you can use the part of the definition about being the greatest common factor... in two directions.
Assume m, n are positive natural numbers. \# in order to introduce \forall
Assume $m \geq n . \#$ in order to introduce \Rightarrow
Pick $g_{1}=\operatorname{gcd}(m, n), g_{2}=\operatorname{gcd}(n, m-n)$. \# for convenience
Then $\exists i, j \in \mathbb{N}, m=i g_{1}, n=j g_{1}$. \# definition of $g_{1}=\operatorname{gcd}(m, n)$.
Then $m-n=(i-j) g_{1} \wedge i-j \in \mathbb{N}$. \# since $m \geq n$ and factoring
Then g_{1} divides both n and $m-n$. \# by definition of divides
Then $g_{2} \geq g_{1}$. \# definition of $g_{2}=\operatorname{gcd}(n, m-n)$.
Then $\exists k, l \in \mathbb{N}, n=k g_{2},(m-n)=l g_{2}$. \# definition of $g_{2}=\operatorname{gcd}(n, m-n)$.
Then $m=(k+l) g_{2} \wedge(k+l) \in \mathbb{N}$. \# factoring
Then g_{2} divides both m and n. \# by definition of divides
Then $g_{1} \geq g 2$. \# definition of $g_{1}=\operatorname{gcd}(m, n)$.
Then $g_{1} \geq g_{2} \wedge g_{2} \geq g 1$. \# conjunction
Then $\left(g_{1}>g_{2} \vee g_{1}=g_{2}\right) \wedge\left(g_{2}>g_{1} \vee g_{2}=g_{1}\right) . \# a \geq b \equiv(a>b \vee a=b)$.
Then $\left(g_{1}>g_{2} \wedge g_{2}>g_{1}\right) \vee g_{1}=g_{2}$. \# distribute \wedge over \vee.
Then $g_{1}=g_{2}$. \# $g_{1}>g_{2} \wedge g_{2}>g_{1}$ is a contradiction
Then $\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m-n)$. \# $g_{1}=\operatorname{gcd}(m, n), g_{2}=\operatorname{gcd}(n, m-n)$.
Then $m \geq n \Rightarrow \operatorname{gcd}(m, n)=\operatorname{gcd}(n, m-n)$. \# introduced \Rightarrow
Then $\forall m, n \in \mathbb{N}, m \geq n \Rightarrow \operatorname{gcd}(m, n)=\operatorname{gcd}(n, m-n)$. \# introduced \forall

