UNIVERSITY OF TORONTO

Faculty of Arts and Science
Term test \#2
CSC 165H1

Duration - 50 minutes
aids allowed: $8.5^{\prime \prime} \times 11^{\prime \prime}$ handwritten aid sheet, both sides

Last Name: \qquad
First Name: \qquad

Do not turn this page until you have received the signal to start. (In the meantime, please fill out the identification section above, and read the instructions below.)

This test consists of 3 questions on 4 pages (including this one). When you receive the signal to start, please make sure that your copy of the test is complete.

Please answer questions in the space provided. You will earn 20% for any question you leave blank or write "I cannot answer this question," on.

Question 1. [10 MARKs]

Use the proof structure from this course (including comments) to prove:

$$
\forall m \in \mathbb{N}, \forall n \in \mathbb{N},(\exists i \in \mathbb{N}, m=5 i+1) \wedge(\exists j \in \mathbb{N}, n=5 j+2) \Rightarrow(\exists k \in \mathbb{N}, m+n=5 k+3)
$$

Proof:

Assume $m \in \mathbb{N}, n \in \mathbb{N} \#$ generic natural numbers
Assume $(\exists i \in \mathbb{N}, m=5 i+1) \wedge(\exists j \in \mathbb{N}, n=5 j+2) \#$ the antecedent
Let $i_{0} \in \mathbb{N}$ be such that $m=5 i_{0}+1$
Let $j_{0} \in \mathbb{N}$ be such that $n=5 j_{0}+2$
then $m+n=\left(5 i_{0}+1\right)+\left(5 j_{0}+2\right)=5\left(i_{0}+j_{0}\right)+3$
Let $k=i_{0}+j_{0}$
then $k \in \mathbb{N} \# i_{0}$ and j_{0} are both natural numbers
then $m+n=5 k+3$
then $\exists k \in \mathbb{N}, m+n=5 k+3$
then $(\exists i \in \mathbb{N}, m=5 i+1) \wedge(\exists j \in \mathbb{N}, n=5 j+2) \Rightarrow \exists k \in \mathbb{N}, m+n=5 k+3$
then $\forall m \in \mathbb{N}, \forall n \in \mathbb{N},(\exists i \in \mathbb{N}, m=5 i+1) \wedge(\exists j \in \mathbb{N}, n=5 j+2) \Rightarrow(\exists k \in \mathbb{N}, m+n=5 k+3)$

Question 2. [10 MARKs]

For $x \in \mathbb{R}$, define $\lfloor x\rfloor$ by

$$
\lfloor x\rfloor \in \mathbb{Z} \wedge\lfloor x\rfloor \leq x \wedge(\forall z \in \mathbb{Z}, z \leq x \Rightarrow z \leq\lfloor x\rfloor)
$$

Use this definition of $\lfloor x\rfloor$, and the structured proof technique from this course (including comments, where appropriate), to prove:

$$
\forall e \in \mathbb{R}^{+}, \exists d \in \mathbb{R}^{+}, \forall w \in \mathbb{R}, w>d \Rightarrow\lfloor w\rfloor>e
$$

Proof:

Assume $e \in \mathbb{R}^{+} \#$ generic positive real number
Pick $d=e+1$, then $d \in \mathbb{R}^{+}$
Assume $w \in \mathbb{R} \#$ generic real number
Assume $w>d$ \# the antecedent
then $w>e+1$ \# because of the d we picked
Assume $\lfloor w\rfloor \leq e \#$ for contradiction
then $\lfloor w\rfloor+1 \leq e+1 \#$ add 1 to both side
then $\lfloor w\rfloor+1<w$ \# transitivity
and $\lfloor w\rfloor+1 \in \mathbb{Z} \#\lfloor w\rfloor$ and 1 are both integers
then $\lfloor w\rfloor+1 \leq\lfloor w\rfloor$ \# by definition of $\lfloor w\rfloor$
then $1 \leq 0 \#$ subtract $\lfloor w\rfloor$ from both sides, and contradict with $1>0$
then $\lfloor w\rfloor>e$ \# because of contradiction
then $w>d \Rightarrow\lfloor w\rfloor>e$ \# introduce \Rightarrow
then $\forall w \in \mathbb{R}, w>d \Rightarrow\lfloor w\rfloor>e \#$ introduce \forall
then $\exists d \in \mathbb{R}^{+}, \forall w \in \mathbb{R}, w>d \Rightarrow\lfloor w\rfloor>e \#$ introduce \exists
then $\forall e \in \mathbb{R}^{+}, \exists d \in \mathbb{R}^{+}, \forall w \in \mathbb{R}, w>d \Rightarrow\lfloor w\rfloor>e \#$ introduce \forall
Alternative Proof utilising the result $\lfloor w\rfloor>w-1$
Assume $e \in \mathbb{R}^{+} \#$ generic positive real number
Pick $d=e+1$, then $d \in \mathbb{R}^{+}$
Assume $w \in \mathbb{R} \#$ generic real number
Assume $w>d$ \# the antecedent
then $w>e+1$ \# because of the d we picked
then $w-1>e$ \# subtract 1 from both sides
and $\lfloor w\rfloor>w-1$ \# property proven in lecture
then $\lfloor w\rfloor>e \#$ transitivity
then $w>d \Rightarrow\lfloor w\rfloor>e \#$ introduce \Rightarrow
then $\forall w \in \mathbb{R}, w>d \Rightarrow\lfloor w\rfloor>e \#$ introduce \forall
then $\exists d \in \mathbb{R}^{+}, \forall w \in \mathbb{R}, w>d \Rightarrow\lfloor w\rfloor>e \#$ introduce \exists
then $\forall e \in \mathbb{R}^{+}, \exists d \in \mathbb{R}^{+}, \forall w \in \mathbb{R}, w>d \Rightarrow\lfloor w\rfloor>e \#$ introduce \forall
\qquad

Question 3. [10 MARKs]

For $x \in \mathbb{R}$, define $\lfloor x\rfloor$ by

$$
\lfloor x\rfloor \in \mathbb{Z} \wedge\lfloor x\rfloor \leq x \wedge(\forall z \in \mathbb{Z}, z \leq x \Rightarrow z \leq\lfloor x\rfloor)
$$

Use this definition of $\lfloor x\rfloor$, and the proof structure from this course (including comments) to disprove:

$$
\exists z \in \mathbb{Z}, \exists x \in \mathbb{R},\lfloor x\rfloor+z \neq\lfloor x+z\rfloor
$$

Sample solution: First negate the statement, yielding

$$
\forall z \in \mathbb{Z}, \forall x \in \mathbb{R},\lfloor x\rfloor+z=\lfloor x+z\rfloor
$$

Like what we did in the assignment, we prove this equality by showing

$$
(\lfloor x\rfloor+z \leq\lfloor x+z\rfloor) \wedge(\lfloor x+z\rfloor \leq\lfloor x\rfloor+z)
$$

Proof:

Assume $z \in \mathbb{Z} \#$ generic integer
Assume $x \in \mathbb{R} \#$ generic real number
then $\lfloor x\rfloor \leq x$ \# by definition of $\lfloor x\rfloor$
then $\lfloor x\rfloor+z \leq x+z \#$ add x to both sides
and $\lfloor x\rfloor+z \in \mathbb{Z} \#$ both $\lfloor x\rfloor$ and z are integers
then $\lfloor x\rfloor+z \leq\lfloor x+z\rfloor$ \# definition of $\lfloor x+z\rfloor$, first inequality obtained
and $\lfloor x+z\rfloor \leq x+z$ \# definition of $\lfloor x+z\rfloor$
then $\lfloor x+z\rfloor-z \leq x$ \# subtract z from both sides
and $\lfloor x+z\rfloor-z \in \mathbb{Z} \#$ both $\lfloor x+z\rfloor$ and z are integers
then $\lfloor x+z\rfloor-z \leq\lfloor x\rfloor$ \# definition of $\lfloor x\rfloor$
then $\lfloor x+z\rfloor \leq\lfloor x\rfloor+z \#$ add z to both sides, second inequality obtained
then $(\lfloor x\rfloor+z \leq\lfloor x+z\rfloor) \wedge(\lfloor x+z\rfloor \leq\lfloor x\rfloor+z)$ \# conjunction introduction
then $\lfloor x\rfloor+z=\lfloor x+z\rfloor \# a=b \Leftrightarrow a \leq b \wedge b \leq a$
then $\forall x \in \mathbb{R},\lfloor x\rfloor+z=\lfloor x+z\rfloor \#$ introduce \forall
then $\forall z \in \mathbb{Z}, \forall x \in \mathbb{R},\lfloor x\rfloor+z=\lfloor x+z\rfloor \#$ introduce \forall
\# 1: \qquad / 10
\# 2: \qquad $/ 10$
\# 3: \qquad $/ 10$

TOTAL: \qquad /30
\qquad

