QUESTION 1. [7 MARKS]

Read the following statement:

$$
S 1: \quad \forall m \in \mathbb{N},\left(\exists q_{1} \in \mathbb{N}, m=6 q_{1}+2\right) \Rightarrow\left(\exists q_{2} \in \mathbb{N}, m^{2}=6 q_{2}+4\right)
$$

$S 1$ is true. Use the proof structure from this course to PROVE it.

SAMPLE SOLUTION:

Assume $m \in \mathbb{N}$. \# in order to introduce \forall
Assume $\exists q_{1} \in \mathbb{N}, m=6 q_{1}+2$. $\#$ in order to introduce \Rightarrow
Then $m^{2}=\left(6 q_{1}+2\right)^{2}=36 q_{1}^{2}+24 q_{1}+4$ \# substitute $m=6 q_{1}+2$ into m^{2}.
Then $m^{2}=6\left(6 q_{1}^{2}+4 q_{1}\right)+4$. \# factor previous line Then $\exists q_{2} \in \mathbb{N}, m^{2}=6 q_{2}+4$.
\# Pick $q_{2}=6 q_{1}^{2}+4 q_{1} \in \mathbb{N}$, since $6, q_{1}, 4 \in \mathbb{N}$, which is closed under,$+ \times$. \# introduced \exists
Then $\exists q_{1} \in \mathbb{N}, m=6 q_{1}+2 \Rightarrow\left(\exists q_{2} \in \mathbb{N}, m^{2}=6 q_{2}+4\right)$ \# introduced \Rightarrow
Then $\forall m \in \mathbb{N},\left(\exists q_{1} \in \mathbb{N}, m=6 q_{1}+2\right) \Rightarrow\left(\exists q_{2} \in \mathbb{N}, m^{2}=6 q_{2}+4\right)$. \# introduced \forall

Question 2. [6 marks]

Read the following statement:

$$
S 2: \quad \forall m \in \mathbb{N},\left(\exists q_{2} \in \mathbb{N}, m^{2}=6 q_{2}+4\right) \Rightarrow\left(\exists q_{1} \in \mathbb{N}, m=6 q_{1}+2\right)
$$

$S 2$ is false. Use the proof structure from this course to DISPROVE it.

SAmple solution: I negate $S 2$ and then prove the negation:

$$
\neg S 2: \quad \exists m \in \mathbb{N},\left(\exists q_{2} \in \mathbb{N}, m^{2}=6 q_{2}+4\right) \wedge \forall q_{1} \in \mathbb{N}, m \neq 6 q_{1}+2
$$

Pick $m=4$. Then $m \in \mathbb{N} \# 6 \in \mathbb{N}$.
Also $4^{2}=16=6 \times 2+4$.
Then $\exists q_{2} \in \mathbb{N}, m^{2}=6 q_{2}+4$. \# Just pick $q_{2}=2$
Also $m=6 \times 0+4$, so $(0,4)$ is the unique (q, r) pair satisfying $m=6 q+r$ and $6>r \geq 0$.
\# by definition of quotient/remainder in mathematical prerequisites
Then $\forall q_{1} \in \mathbb{N}, m \neq 6 q_{1}+2$. \# since $(0,4)$ is unique.
Then $\exists q_{2} \in \mathbb{N}, m^{2}=6 q_{2}+4 \wedge \forall q_{1} \in \mathbb{N}, m \neq 6 q_{1}+2$
\# introduced \exists
\qquad

QuESTION 3. [6 MARKs]

Read the definition of $\lfloor x\rfloor$ below:

$$
\forall x \in \mathbb{R},\lfloor x\rfloor \in \mathbb{Z} \wedge\lfloor x\rfloor \leq x \wedge(\forall z \in \mathbb{Z}, z \leq x \Rightarrow z \leq\lfloor x\rfloor)
$$

Use the proof structure from this course, and the definition of $\lfloor x\rfloor$ above, to PROVE the following statement:

$$
S 3: \quad \forall x \in \mathbb{R},\lfloor x\rfloor+7>x+6
$$

SAMPLE SOLUTION:

Assume x is a generic real number \# in order to introduce \forall
Then $\lfloor x\rfloor \in \mathbb{Z}$. \# definition of $\lfloor x\rfloor$
Then $\lfloor x\rfloor+1 \in \mathbb{Z} . \#\lfloor x\rfloor, 1 \in \mathbb{Z}$, and \mathbb{Z} closed under +
Then $\lfloor x\rfloor+1>\lfloor x\rfloor$. \# add $\lfloor x\rfloor$ to $1>0$
Then $\lfloor x\rfloor+1>x$. \# by contrapositive of $(\forall z \in \mathbb{Z}, z \leq x \Rightarrow z \leq\lfloor x\rfloor)$
Then $\lfloor x\rfloor+7>x+6$. \# add 6 to previous line
Conclude $\forall x \in \mathbb{R},\lfloor x\rfloor+7>x+6$. \# introduced \forall

This page is left (nearly) blank to accommodate work that wouldn't fit elsewhere.
\# 1: \qquad 7
\# 2: \qquad / 6
\# 3: \qquad / 6

TOTAL: \qquad /19
\qquad

