QUESTION 1. [7 MARKS]

Read the following statement:

$$S1: \quad orall m \in \mathbb{N}, (\exists q_1 \in \mathbb{N}, m = 6q_1 + 2) \Rightarrow \left(\exists q_2 \in \mathbb{N}, m^2 = 6q_2 + 4
ight)$$

S1 is true. Use the proof structure from this course to PROVE it.

SAMPLE SOLUTION:

Assume $m \in \mathbb{N}$. # in order to introduce \forall

Assume $\exists q_1 \in \mathbb{N}, m = 6q_1 + 2$. # in order to introduce \Rightarrow Then $m^2 = (6q_1 + 2)^2 = 36q_1^2 + 24q_1 + 4$ # substitute $m = 6q_1 + 2$ into m^2 . Then $m^2 = 6(6q_1^2 + 4q_1) + 4$. # factor previous line Then $\exists q_2 \in \mathbb{N}, m^2 = 6q_2 + 4$. # Pick $q_2 = 6q_1^2 + 4q_1 \in \mathbb{N}$, since $6, q_1, 4 \in \mathbb{N}$, which is closed under $+, \times$. # introduced \exists Then $\exists q_1 \in \mathbb{N}, m = 6q_1 + 2 \Rightarrow (\exists q_2 \in \mathbb{N}, m^2 = 6q_2 + 4)$ # introduced \Rightarrow

Then $\forall m \in \mathbb{N}, (\exists q_1 \in \mathbb{N}, m = 6q_1 + 2) \Rightarrow (\exists q_2 \in \mathbb{N}, m^2 = 6q_2 + 4). \ \# \ \mathrm{introduced} \ \forall$

QUESTION 2. [6 MARKS]

Read the following statement:

$$S2: \quad orall m \in \mathbb{N}, \left(\exists q_2 \in \mathbb{N}, m^2 = 6q_2 + 4
ight) \Rightarrow (\exists q_1 \in \mathbb{N}, m = 6q_1 + 2)
ight)$$

S2 is false. Use the proof structure from this course to DISPROVE it.

SAMPLE SOLUTION: I negate S2 and then prove the negation:

$$eg S2: \quad \exists m \in \mathbb{N}, \left(\exists q_2 \in \mathbb{N}, m^2 = 6q_2 + 4
ight) \land orall q_1 \in \mathbb{N}, m
eq 6q_1 + 2$$

Pick m = 4. Then $m \in \mathbb{N} \# 6 \in \mathbb{N}$. Also $4^2 = 16 = 6 \times 2 + 4$. Then $\exists q_2 \in \mathbb{N}, m^2 = 6q_2 + 4$. # Just pick $q_2 = 2$ Also $m = 6 \times 0 + 4$, so (0, 4) is the unique (q, r) pair satisfying m = 6q + r and $6 > r \ge 0$. # by definition of quotient/remainder in mathematical prerequisites Then $\forall q_1 \in \mathbb{N}, m \neq 6q_1 + 2$. # since (0, 4) is unique. Then $\exists q_2 \in \mathbb{N}, m^2 = 6q_2 + 4 \land \forall q_1 \in \mathbb{N}, m \neq 6q_1 + 2$ # introduced \exists

$\mathrm{CSC}\,165\mathrm{H1}$

QUESTION 3. [6 MARKS]

Read the definition of $\lfloor x \rfloor$ below:

 $orall x \in \mathbb{R}, \lfloor x
floor \in \mathbb{Z} \land \lfloor x
floor \leq x \land (orall z \in \mathbb{Z}, z \leq x \Rightarrow z \leq \lfloor x
floor)$

Use the proof structure from this course, and the definition of $\lfloor x \rfloor$ above, to **PROVE** the following statement:

S3: $\forall x \in \mathbb{R}, |x| + 7 > x + 6$

SAMPLE SOLUTION:

Assume x is a generic real number # in order to introduce \forall

Then $\lfloor x \rfloor \in \mathbb{Z}$. # definition of $\lfloor x \rfloor$ Then $\lfloor x \rfloor + 1 \in \mathbb{Z}$. # $\lfloor x \rfloor$, $1 \in \mathbb{Z}$, and \mathbb{Z} closed under + Then $\lfloor x \rfloor + 1 > \lfloor x \rfloor$. # add $\lfloor x \rfloor$ to 1 > 0Then $\lfloor x \rfloor + 1 > x$. # by contrapositive of ($\forall z \in \mathbb{Z}, z \le x \Rightarrow z \le \lfloor x \rfloor$) Then $\lfloor x \rfloor + 7 > x + 6$. # add 6 to previous line

Conclude $\forall x \in \mathbb{R}, \lfloor x \rfloor + 7 > x + 6. \# \text{ introduced } \forall$

This page is left (nearly) blank to accommodate work that wouldn't fit elsewhere.

1: ____/ 7 # 2: ____/ 6 # 3: ____/ 6

TOTAL: ____/19