
CSC165 Tutorial #7|Sample Solutions Fall 2014

Consider the following algorithm:

def order(L):

""" (list of numbers) -> None

Order L from smallest to largest. L is changed in-place. """

i = 1

while i < len(L):

j = i

while j > 0 and L[j] < L[j-1]:

L[j], L[j-1] = L[j-1], L[j] # swap L[j] and L[j-1]

j = j - 1

i = i + 1

1. Compute the number of \swaps" (executing the line that says swap) performed by the algorithm in the

worst-case, on any list L of length n.

The def line can be ignored: it is part of the syntax to define a function, but not something that

actually gets executed every time we call the function. So we count only the steps in the body of the

function.

The outer loop iterates over i = 1,2,3,...,n-1.

For each value of i, the inner loop iterates over j = i,i-1,...,2,1, as long as L[j] < L[j-1]. In

the worst-case (when L is initially sorted in reverse order), this happens for every value of j.

For each value of j, the algorithm swaps once: 1 time when i = 1 (for j = 1), 2 times when i = 2

(for j = 2 and j = 1), . . . , n� 1 times when i = n-1 (for j = n-1 and . . . and j = 1).

So in total, the algorithm performs exactly 1 + 2 + � � �+ n� 1 = n(n� 1)=2 = n2=2� n=2 swaps, in

the worst-case.

Dept. of Computer Science, University of Toronto, St. George Campus Page 1 of ??



CSC165 Tutorial #7|Sample Solutions Fall 2014

2. Compute the number of \steps" (basic operations) performed by the algorithm in the worst-case, on any list

L of length n. Count a step each time a line is visited.

As before, we count only the lines in the body. The outer loop iterates over i = 1,2,3,...,n-1.

For each value of i, the inner loop iterates over j = i,i-1,...,2,1, in the worst-case (as argued in

the first question).

For each value of j, the algorithm performs 3 steps. So over all values of j, a total of 3i steps.

In addition, for each value of i, there are steps performed outside of the inner loop: 3 steps for the

lines outside the inner loop, and an additional 1 step to evaluate the last inner loop condition — when

the condition becomes False. So each iteration of the outer loop performs 3i+ 4 steps.

Together with the first line, and the extra 1 step for the last outer loop condition, the number of steps

performed by the algorithm is exactly:

 
n�1X
i=1

(3i+ 4)

!
+ 2 = 3

 
n�1X
i=1

i

!
+ 4

 
n�1X
i=1

1

!
+ 2

= 3n(n� 1)=2 + 4(n� 1) + 2

= 3n2 + 5n� 4

Dept. of Computer Science, University of Toronto, St. George Campus Page 2 of ??


