Consider the following algorithm:

```
def order(L):
    """ (list of numbers) -> None
        Order L from smallest to largest. L is changed in-place. """
    i = 1
    while i < len(L):
        j = i
        while j > 0 and L[j] < L[j-1]:
            L[j], L[j-1] = L[j-1], L[j] # swap L[j] and L[j-1]
            j = j - 1
        i = i + 1
```

1. Compute the number of "swaps" (executing the line that says swap) performed by the algorithm in the worst-case, on any list L of length n.

The def line can be ignored: it is part of the syntax to define a function, but not something that actually gets executed every time we call the function. So we count only the steps in the body of the function.
The outer loop iterates over $i=1,2,3, \ldots, n-1$.
For each value of i, the inner loop iterates over $j=i, i-1, \ldots, 2,1$, as long as $L[j]<L[j-1]$. In the worst-case (when L is initially sorted in reverse order), this happens for every value of j.
For each value of j , the algorithm swaps once: 1 time when $\mathrm{i}=1$ (for $\mathrm{j}=1$), 2 times when $\mathrm{i}=2$ (for $\mathrm{j}=2$ and $\mathrm{j}=1$), $\ldots, n-1$ times when $\mathrm{i}=\mathrm{n}-1$ (for $\mathrm{j}=\mathrm{n}-1$ and \ldots and $\mathrm{j}=1$).
So in total, the algorithm performs exactly $1+2+\cdots+n-1=n(n-1) / 2=n^{2} / 2-n / 2$ swaps, in the worst-case.
2. Compute the number of "steps" (basic operations) performed by the algorithm in the worst-case, on any list L of length n. Count a step each time a line is visited.

As before, we count only the lines in the body. The outer loop iterates over $\mathrm{i}=1,2,3, \ldots, \mathrm{n}-1$.
For each value of i, the inner loop iterates over $j=i, i-1, \ldots, 2,1$, in the worst-case (as argued in the first question).
For each value of j, the algorithm performs 3 steps. So over all values of j, a total of $3 i$ steps.
In addition, for each value of i, there are steps performed outside of the inner loop: 3 steps for the lines outside the inner loop, and an additional 1 step to evaluate the last inner loop condition - when the condition becomes False. So each iteration of the outer loop performs $3 i+4$ steps.
Together with the first line, and the extra 1 step for the last outer loop condition, the number of steps performed by the algorithm is exactly:

$$
\begin{aligned}
\left(\sum_{i=1}^{n-1}(3 i+4)\right)+2 & =3\left(\sum_{i=1}^{n-1} i\right)+4\left(\sum_{i=1}^{n-1} 1\right)+2 \\
& =3 n(n-1) / 2+4(n-1)+2 \\
& =3 n^{2}+5 n-4
\end{aligned}
$$

